Longhi Stefano
Opt Lett. 2020 Jul 15;45(14):4036-4039. doi: 10.1364/OL.399742.
The topological trivial band of a lattice can be driven into a topological phase by disorder in the system. This so-called topological Anderson phase has been predicted and observed for uncorrelated static disorder, while in the presence of correlated disorder, conflicting results are found. Here we consider a Su-Schrieffer-Heeger waveguide lattice in the trivial topological phase and show that quasi-periodic disorder in the coupling constants can drive the lattice into a topological nontrivial phase. A method to detect the emergence of the topological Anderson phase, based on light dynamics at the edge of a quasi-periodic waveguide lattice, is suggested.
晶格的拓扑平凡能带可因系统中的无序而被驱动进入拓扑相。这种所谓的拓扑安德森相已针对不相关的静态无序进行了预测和观测,而在存在相关无序的情况下,则得到了相互矛盾的结果。在此,我们考虑处于平凡拓扑相的Su-Schrieffer-Heeger波导晶格,并表明耦合常数中的准周期无序可将该晶格驱动到拓扑非平凡相。我们提出了一种基于准周期波导晶格边缘处的光动力学来检测拓扑安德森相出现的方法。