Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States.
Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States.
Anal Chem. 2020 Oct 6;92(19):13084-13091. doi: 10.1021/acs.analchem.0c02051. Epub 2020 Sep 9.
Low molecular weight metabolites are essential for defining the molecular phenotypes of cells. However, spatial metabolomics tools often lack the sensitivity, specify, and spatial resolution to provide comprehensive descriptions of these species in tissue. MALDI imaging mass spectrometry (IMS) of low molecular weight ions is particularly challenging as MALDI matrix clusters are often nominally isobaric with multiple metabolite ions, requiring high resolving power instrumentation or derivatization to circumvent this issue. An alternative to this is to perform ion mobility separation before ion detection, enabling the visualization of metabolites without the interference of matrix ions. Additional difficulties surrounding low weight metabolite visualization include high resolution imaging, while maintaining sufficient ion numbers for broad and representative analysis of the tissue chemical complement. Here, we use MALDI timsTOF IMS to image low molecular weight metabolites at higher spatial resolution than most metabolite MALDI IMS experiments (20 μm) while maintaining broad coverage within the human kidney. We demonstrate that trapped ion mobility spectrometry (TIMS) can resolve matrix peaks from metabolite signal and separate both isobaric and isomeric metabolites with different distributions within the kidney. The added ion mobility data dimension dramatically increased the peak capacity for spatial metabolomics experiments. Through this improved sensitivity, we have found >40 low molecular weight metabolites in human kidney tissue, such as argininic acid, acetylcarnitine, and choline that localize to the cortex, medulla, and renal pelvis, respectively. Future work will involve further exploring metabolomic profiles of human kidneys as a function of age, sex, and race.
低分子量代谢物对于定义细胞的分子表型至关重要。然而,空间代谢组学工具通常缺乏灵敏度、特异性和空间分辨率,无法全面描述组织中的这些物质。低分子量离子的 MALDI 成像质谱(IMS)特别具有挑战性,因为 MALDI 基质团簇通常与多种代谢物离子具有名义等质量,需要高分辨率仪器或衍生化来解决这个问题。解决这个问题的替代方法是在离子检测之前进行离子淌度分离,从而能够在不干扰基质离子的情况下可视化代谢物。围绕低分子量代谢物可视化的其他困难包括高分辨率成像,同时保持足够的离子数量以广泛而有代表性地分析组织的化学组成。在这里,我们使用 MALDI timsTOF IMS 以比大多数代谢物 MALDI IMS 实验(20μm)更高的空间分辨率成像低分子量代谢物,同时在人肾脏中保持广泛的覆盖范围。我们证明,被困离子淌度谱(TIMS)可以从代谢物信号中分辨基质峰,并分离具有不同分布的等质量和异构体代谢物。增加的离子淌度数据维度极大地增加了空间代谢组学实验的峰容量。通过这种提高的灵敏度,我们在人肾脏组织中发现了超过 40 种低分子量代谢物,如精氨酸酸、乙酰肉碱和胆碱,它们分别定位于皮质、髓质和肾盂。未来的工作将涉及进一步探索人类肾脏的代谢组学图谱作为年龄、性别和种族的函数。