Wang Ruixuan, Hastings Waylon J, Saliba Julian G, Bao Duran, Huang Yuanyu, Maity Sudipa, Kamal Ahmad Omar Mustafa, Hu Logan, Wang Shengyu, Fan Jia, Ning Bo
Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States.
Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States.
ACS Nano. 2025 Jan 14;19(1):73-100. doi: 10.1021/acsnano.4c11505. Epub 2024 Dec 20.
Spatial omics methods are extensions of traditional histological methods that can illuminate important biomedical mechanisms of physiology and disease by examining the distribution of biomolecules, including nucleic acids, proteins, lipids, and metabolites, at microscale resolution within tissues or individual cells. Since, for some applications, the desired resolution for spatial omics approaches the nanometer scale, classical tools have inherent limitations when applied to spatial omics analyses, and they can measure only a limited number of targets. Nanotechnology applications have been instrumental in overcoming these bottlenecks. When nanometer-level resolution is needed for spatial omics, super resolution microscopy or detection imaging techniques, such as mass spectrometer imaging, are required to generate precise spatial images of target expression. DNA nanostructures are widely used in spatial omics for purposes such as nucleic acid detection, signal amplification, and DNA barcoding for target molecule labeling, underscoring advances in spatial omics. Other properties of nanotechnologies include advanced spatial omics methods, such as microfluidic chips and DNA barcodes. In this review, we describe how nanotechnologies have been applied to the development of spatial transcriptomics, proteomics, metabolomics, epigenomics, and multiomics approaches. We focus on how nanotechnology supports improved resolution and throughput of spatial omics, surpassing traditional techniques. We also summarize future challenges and opportunities for the application of nanotechnology to spatial omics methods.
空间组学方法是传统组织学方法的扩展,通过在组织或单个细胞内以微观尺度分辨率检查生物分子(包括核酸、蛋白质、脂质和代谢物)的分布,能够阐明生理学和疾病的重要生物医学机制。由于在某些应用中,空间组学所需的分辨率接近纳米尺度,经典工具在应用于空间组学分析时存在固有局限性,并且它们只能测量有限数量的目标。纳米技术应用在克服这些瓶颈方面发挥了重要作用。当空间组学需要纳米级分辨率时,需要超分辨率显微镜或检测成像技术,如质谱成像,来生成目标表达的精确空间图像。DNA纳米结构广泛应用于空间组学,用于核酸检测、信号放大以及用于目标分子标记的DNA条形码等目的,凸显了空间组学的进展。纳米技术的其他特性还包括先进的空间组学方法,如微流控芯片和DNA条形码。在这篇综述中,我们描述了纳米技术如何应用于空间转录组学、蛋白质组学、代谢组学、表观基因组学和多组学方法的发展。我们关注纳米技术如何支持提高空间组学的分辨率和通量,超越传统技术。我们还总结了纳米技术应用于空间组学方法的未来挑战和机遇。