School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China.
State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
Chromosoma. 2020 Dec;129(3-4):181-200. doi: 10.1007/s00412-020-00741-w. Epub 2020 Jul 15.
Micronuclei are extra-nuclear bodies mainly derived from ana-telophase lagging chromosomes/chromatins (LCs) that are not incorporated into primary nuclei at mitotic exit. Unlike primary nuclei, most micronuclei are enclosed by nuclear envelope (NE) that is highly susceptible to spontaneous and irreparable rupture. Ruptured micronuclei act as triggers of chromothripsis-like chaotic chromosomal rearrangements and cGAS-mediated innate immunity and inflammation, raising the view that micronuclei play active roles in human aging and tumorigenesis. Thus, understanding the ways in which micronuclear envelope (mNE) goes awry acquires increased importance. Here, we review the data to present a general framework for this question. We firstly describe NE reassembly after mitosis and NE repair during interphase. Simultaneously, we briefly discuss how mNE is organized and how mNE rupture controls the fate of micronuclei and micronucleated cells. As a focus of this review, we highlight current knowledge about why mNE is rupture-prone and irreparable. For this, we survey observations from a series of elegant studies to provide a systematic overview. We conclude that the birth of rupture-prone and irreparable micronuclei may be the cumulative effects of their intracellular geographic origins, biophysical properties, and specific mNE features. We propose that DNA damage and immunogenicity in micronuclei increase stepwise from altered mNE components, mNE rupture, and refractory to repair. Throughout our discussion, we note interesting issues in mNE fragility that have yet to be resolved.
微核是主要来源于有丝分裂末期滞后染色体/染色质(LCs)的核外体,这些染色体/染色质在有丝分裂结束时没有被纳入主核。与主核不同,大多数微核被核膜(NE)包围,核膜极易自发且不可修复地破裂。破裂的微核作为类似染色质碎裂的混沌染色体重排和 cGAS 介导的固有免疫和炎症的触发因素,这表明微核在人类衰老和肿瘤发生中发挥积极作用。因此,了解微核膜(mNE)出错的方式变得更加重要。在这里,我们回顾了这些数据,提出了一个关于这个问题的总体框架。我们首先描述了有丝分裂后核膜的重新组装和有丝分裂间期核膜的修复。同时,我们简要讨论了 mNE 是如何组织的,以及 mNE 破裂如何控制微核和微核化细胞的命运。作为本综述的重点,我们强调了当前关于 mNE 为何易破裂且不可修复的知识。为此,我们调查了一系列优雅研究的观察结果,以提供系统的概述。我们得出的结论是,易破裂且不可修复的微核的产生可能是其细胞内起源、生物物理特性和特定 mNE 特征的累积效应。我们提出,微核中的 DNA 损伤和免疫原性会随着受损的 mNE 成分、mNE 破裂以及对修复的抵抗而逐步增加。在整个讨论过程中,我们注意到 mNE 脆弱性中的一些有趣问题仍有待解决。