Agabekian Inna A, Abdulkina Liliia R, Lushnenko Alina Y, Young Pierce G, Valeeva Lia R, Boskovic Olivia, Lilly Ethan G, Sharipova Margarita R, Shippen Dorothy E, Juenger Thomas E, Shakirov Eugene V
Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia.
Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas, 77843-2128, USA.
Plant Mol Biol. 2024 May 30;114(3):65. doi: 10.1007/s11103-024-01457-6.
Telomeres are conserved chromosomal structures necessary for continued cell division and proliferation. In addition to the classical telomerase pathway, multiple other genes including those involved in ribosome metabolism and chromatin modification contribute to telomere length maintenance. We previously reported that Arabidopsis thaliana ribosome biogenesis genes OLI2/NOP2A, OLI5/RPL5A and OLI7/RPL5B have critical roles in telomere length regulation. These three OLIGOCELLULA genes were also shown to function in cell proliferation and expansion control and to genetically interact with the transcriptional co-activator ANGUSTIFOLIA3 (AN3). Here we show that AN3-deficient plants progressively lose telomeric DNA in early homozygous mutant generations, but ultimately establish a new shorter telomere length setpoint by the fifth mutant generation with a telomere length similar to oli2/nop2a -deficient plants. Analysis of double an3 oli2 mutants indicates that the two genes are epistatic for telomere length control. Telomere shortening in an3 and oli mutants is not caused by telomerase inhibition; wild type levels of telomerase activity are detected in all analyzed mutants in vitro. Late generations of an3 and oli mutants are prone to stem cell damage in the root apical meristem, implying that genes regulating telomere length may have conserved functional roles in stem cell maintenance mechanisms. Multiple instances of anaphase fusions in late generations of oli5 and oli7 mutants were observed, highlighting an unexpected effect of ribosome biogenesis factors on chromosome integrity. Overall, our data implicate AN3 transcription coactivator and OLIGOCELLULA proteins in the establishment of telomere length set point in plants and further suggest that multiple regulators with pleiotropic functions can connect telomere biology with cell proliferation and cell expansion pathways.
端粒是细胞持续分裂和增殖所必需的保守染色体结构。除了经典的端粒酶途径外,包括参与核糖体代谢和染色质修饰的基因在内的多个其他基因也有助于维持端粒长度。我们之前报道过,拟南芥核糖体生物合成基因OLI2/NOP2A、OLI5/RPL5A和OLI7/RPL5B在端粒长度调控中起关键作用。这三个OLIGOCELLULA基因还在细胞增殖和扩展控制中发挥作用,并与转录共激活因子ANGUSTIFOLIA3(AN3)发生遗传相互作用。在这里,我们表明,AN3缺陷型植株在纯合突变体早期世代中会逐渐丢失端粒DNA,但最终在第五代突变体中建立了一个新的更短的端粒长度设定点,其端粒长度与oli2/nop2a缺陷型植株相似。对双突变体an3 oli2的分析表明,这两个基因在端粒长度控制上存在上位性。an3和oli突变体中端粒缩短并非由端粒酶抑制引起;在所有分析的突变体中均检测到体外端粒酶活性水平与野生型相当。an3和oli突变体的晚期世代在根尖分生组织中容易发生干细胞损伤,这意味着调节端粒长度的基因可能在干细胞维持机制中具有保守的功能作用。在oli5和oli7突变体的晚期世代中观察到多个后期融合的实例,突出了核糖体生物合成因子对染色体完整性的意外影响。总体而言,我们的数据表明AN3转录共激活因子和OLIGOCELLULA蛋白参与了植物端粒长度设定点的建立,并进一步表明具有多效性功能的多个调节因子可以将端粒生物学与细胞增殖和细胞扩展途径联系起来。