Grupo de Investigación Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid, 28040, Spain.
Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, 2780-157, Portugal.
Physiol Plant. 2021 Jun;172(2):391-404. doi: 10.1111/ppl.13145. Epub 2020 Jul 21.
Metabolic changes underpinning drought-induced variations in stem respiration (R ) are unknown. We measured R rates and metabolite and gene expression profiles in Ulmus minor Mill. and Quercus ilex L. seedlings subjected to increasing levels of drought stress to better understand how carbon, nitrogen and energy metabolism interact during drought. In both species, only plants showing extreme stress symptoms - i.e. negligible rates of leaf stomatal conductance and photosynthesis, and high stem dehydration (30-50% of maximum water storage) and contraction (50-150 μm week ) - exhibited lower R rates than well-watered plants. Abundance of low-molecular weight sugars (e.g. glucose and fructose) and sugar alcohols (e.g. mannitol) increased with drought, at more moderate stress and to a higher extent in Q. ilex than U. minor. Abundance of amino acids increased at more severe stress, more abruptly, and to a higher extent in U. minor, coinciding with leaf senescence, which did not occur in Q. ilex. Organic acids changed less in response to drought: threonate and glycerate increased, and citrate decreased although slightly in both species. Transcripts of genes coding for enzymes of the Krebs cycle decreased in Q. ilex and increased in U. minor in conditions of extreme drought stress. The maintenance of R under severe growth and photosynthetic restrictions reveals the importance of stem mitochondrial activity in drought acclimation. The eventual decline in R diverts carbon substrates from entering the Krebs cycle that may help to cope with osmotic and oxidative stress during severe drought and to recover hydraulic functionality afterwards.
代谢变化是导致干旱引起的茎呼吸(R)变化的基础,但目前尚不清楚。我们测量了受不同程度干旱胁迫的小叶榆和欧洲栓皮栎幼苗的 R 速率以及代谢物和基因表达谱,以更好地了解碳、氮和能量代谢在干旱过程中是如何相互作用的。在这两个物种中,只有表现出极端胁迫症状的植物——即叶片气孔导度和光合作用可忽略不计,以及茎高度脱水(最大储水能力的 30-50%)和收缩(50-150 μm/周)——的植物,其 R 速率低于水分充足的植物。低分子量糖(如葡萄糖和果糖)和糖醇(如甘露醇)的丰度随着干旱的增加而增加,在更适度的胁迫下,在欧洲栓皮栎中的增加幅度高于小叶榆。在更严重的胁迫下,氨基酸的丰度增加得更突然,幅度也更高,与小叶榆中的叶片衰老同时发生,而在欧洲栓皮栎中则没有。有机酸对干旱的响应变化较小:三羧酸和甘油酸增加,柠檬酸略有减少,但在这两个物种中都减少了。在极端干旱胁迫条件下,编码克雷布斯循环酶的基因的转录物在欧洲栓皮栎中减少,而在小叶榆中增加。在严重的生长和光合作用限制条件下,R 的维持表明茎线粒体活性在干旱适应中的重要性。R 的最终下降将碳底物从进入克雷布斯循环中转移出来,这可能有助于在严重干旱期间应对渗透和氧化应激,并在之后恢复水力功能。