Suppr超能文献

对手部固有肌和外在肌运动神经元的无创分析。

Non-invasive analysis of motor neurons controlling the intrinsic and extrinsic muscles of the hand.

作者信息

Tanzarella Simone, Muceli Silvia, Del Vecchio Alessandro, Casolo Andrea, Farina Dario

机构信息

Department of Bioengineering, Imperial College London, London, United Kingdom.

出版信息

J Neural Eng. 2020 Aug 12;17(4):046033. doi: 10.1088/1741-2552/aba6db.

Abstract

OBJECTIVE

We present a non-invasive framework for investigating efferent commands to 14 extrinsic and intrinsic hand muscles. We extend previous studies (limited to a few muscles) on common synaptic input among pools of motor neurons in a large number of muscles.

APPROACH

Seven subjects performed sinusoidal isometric contractions to complete seven types of grasps, with each finger and with three combinations of fingers in opposition with the thumb. High-density surface EMG (HD-sEMG) signals (384 channels in total) recorded from the 14 muscles were decomposed into the constituent motor unit action potentials. This provided a non-invasive framework for the investigation of motor neuron discharge patterns, muscle coordination and efferent commands of the hand muscles during grasping. Moreover, during grasping tasks, it was possible to identify common neural information among pools of motor neurons innervating the investigated muscles. For this purpose, principal component analysis (PCA) was applied to the smoothed discharge rates of the decoded motor units.

MAIN RESULTS

We found that the first principal component (PC1) of the ensemble of decoded motor neuron spike trains explained a variance of (53.0 ± 10.9) % and was positively correlated with force (R = 0.67 ± 0.10 across all subjects and tasks). By grouping the pools of motor neurons from extrinsic or intrinsic muscles, the PC1 explained a proportion of variance of (57.1 ± 11.3) % and (56.9 ± 11.8) %, respectively, and was correlated with force with R = 0.63 ± 0.13 and 0.63 ± 0.13, respectively.

SIGNIFICANCE

These observations demonstrate a low dimensional control of motor neurons across multiple muscles that can be exploited for extracting control signals in neural interfacing. The proposed framework was designed for hand rehabilitation perspectives, such as post-stroke rehabilitation and hand-exoskeleton control.

摘要

目的

我们提出了一个用于研究对14块手部外在和内在肌肉的传出指令的非侵入性框架。我们扩展了先前关于大量肌肉中运动神经元池之间共同突触输入的研究(先前研究仅限于少数几块肌肉)。

方法

7名受试者进行正弦等长收缩以完成7种抓握类型,包括每个手指单独抓握以及手指与拇指对向的三种组合抓握。从14块肌肉记录的高密度表面肌电图(HD-sEMG)信号(总共384个通道)被分解为组成运动单位动作电位。这为研究抓握过程中运动神经元放电模式、肌肉协调和手部肌肉传出指令提供了一个非侵入性框架。此外,在抓握任务期间,有可能识别支配所研究肌肉的运动神经元池之间的共同神经信息。为此,主成分分析(PCA)应用于解码运动单位的平滑放电率。

主要结果

我们发现解码后的运动神经元尖峰序列集合的第一主成分(PC1)解释了(53.0±10.9)%的方差,并且与力呈正相关(在所有受试者和任务中R = 0.67±0.10)。通过将来自外在或内在肌肉的运动神经元池分组,PC1分别解释了(57.1±11.3)%和(56.9±11.8)%的方差比例,并且与力的相关性分别为R = 0.63±0.13和0.63±0.13。

意义

这些观察结果表明跨多块肌肉的运动神经元存在低维控制,可用于在神经接口中提取控制信号。所提出的框架是从手部康复角度设计的,例如中风后康复和手部外骨骼控制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验