Chen Ji-Yao, Capponi Sylvain, Wietek Alexander, Mambrini Matthieu, Schuch Norbert, Poilblanc Didier
Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany.
Munich Center for Quantum Science and Technology, Schellingstraße 4, 80799 München, Germany.
Phys Rev Lett. 2020 Jul 3;125(1):017201. doi: 10.1103/PhysRevLett.125.017201.
Quantum spin liquids can be faithfully represented and efficiently characterized within the framework of projected entangled pair states (PEPS). Guided by extensive exact diagonalization and density matrix renormalization group calculations, we construct an optimized symmetric PEPS for a SU(3){1} chiral spin liquid on the square lattice. Characteristic features are revealed by the entanglement spectrum (ES) on an infinitely long cylinder. In all three Z{3} sectors, the level counting of the linear dispersing modes is in full agreement with SU(3){1} Wess-Zumino-Witten conformal field theory prediction. Special features in the ES are shown to be in correspondence with bulk anyonic correlations, indicating a fine structure in the holographic bulk-edge correspondence. Possible universal properties of topological SU(N){k} chiral PEPS are discussed.
量子自旋液体可以在投影纠缠对态(PEPS)框架内得到忠实表示并有效表征。在大量精确对角化和密度矩阵重整化群计算的指导下,我们为正方晶格上的SU(3)₁手征自旋液体构建了一个优化的对称PEPS。通过无限长圆柱上的纠缠谱(ES)揭示了其特征。在所有三个Z₃扇区中,线性色散模式的能级计数与SU(3)₁韦斯 - 祖米诺 - 维滕共形场论预测完全一致。ES中的特殊特征被证明与体任意子关联相对应,这表明全息体边对应中存在精细结构。讨论了拓扑SU(N)ₖ手征PEPS可能的普适性质。