Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.
Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
Curr Biol. 2020 Sep 7;30(17):3364-3377.e4. doi: 10.1016/j.cub.2020.06.041. Epub 2020 Jul 16.
Actomyosin networks provide the major contractile machinery for regulating cell and tissue morphogenesis during development. These networks undergo dynamic rearrangements, enabling cells to have a broad range of mechanical actions. How cells integrate different mechanical stimuli to accomplish complicated tasks in vivo remains unclear. Here, we explore this problem in the context of cell matching, where individual cells form precise inter-cellular connections between partner cells. To study the dynamic roles of actomyosin networks in regulating precise cell matching, we focused on the process of heart formation during Drosophila embryogenesis, where selective filopodia-binding adhesions ensure precise cell alignment. We find that non-muscle Myosin II clusters periodically oscillate within cardioblasts with ~4-min intervals. We observe that filopodia dynamics-including protrusions, retraction, binding stabilization, and binding separation-are correlated with the periodic localization of Myosin II clusters at the cell leading edge. Perturbing the Myosin II activity and oscillatory pattern alters the filopodia properties and binding dynamics and results in mismatched cardioblasts. By simultaneously changing the activity of Myosin II and filopodia adhesion levels, we further demonstrate that levels of Myosin II and adhesion are balanced to ensure precise connectivity between cardioblasts. Combined, we propose a mechanical proofreading machinery of robust cell matching, whereby oscillations of Myosin II within cardioblasts periodically probe filopodia adhesion strength and ensure correct cell-cell connection formation.
肌动球蛋白网络为细胞和组织形态发生提供了主要的收缩机制,在发育过程中。这些网络经历动态重排,使细胞具有广泛的机械作用。细胞如何整合不同的机械刺激,以完成体内复杂的任务尚不清楚。在这里,我们在细胞匹配的背景下探讨这个问题,在细胞匹配中,单个细胞在伴侣细胞之间形成精确的细胞间连接。为了研究肌动球蛋白网络在调节精确细胞匹配中的动态作用,我们专注于果蝇胚胎发生过程中心脏形成,其中选择性的丝状伪足结合黏附确保了精确的细胞对齐。我们发现非肌肉肌球蛋白 II 簇在心肌细胞中以大约 4 分钟的间隔周期性地振荡。我们观察到丝状伪足动力学,包括突起、回缩、结合稳定和结合分离,与肌球蛋白 II 簇在细胞前缘的周期性定位相关。扰乱肌球蛋白 II 的活性和振荡模式会改变丝状伪足的性质和结合动力学,导致心肌细胞匹配不当。通过同时改变肌球蛋白 II 和丝状伪足黏附水平的活性,我们进一步证明肌球蛋白 II 和黏附水平的平衡确保了心肌细胞之间的精确连接。综上所述,我们提出了一种稳健细胞匹配的机械验证机制,即心肌细胞内肌球蛋白 II 的振荡周期性地探测丝状伪足黏附强度,以确保正确的细胞-细胞连接形成。