Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain.
Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain; Farmazia Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), 01006 Vitoria-Gasteiz, Euskadi, Spain.
J Inorg Biochem. 2020 Sep;210:111169. doi: 10.1016/j.jinorgbio.2020.111169. Epub 2020 Jul 9.
Classical molecular dynamic simulations and density functional theory are used to unveil the interaction of aluminum with various phosphorylated derivatives of the fragment KSPVPKSPVEEKG (NF13), a major multiphosphorylation domain of human neurofilament medium (NFM). Our calculations reveal the rich coordination chemistry of the resultant structures with a clear tendency of aluminum to form multidentate structures, acting as a bridging agent between different sidechains and altering the local secondary structure around the binding site. Our evaluation of binding energies allows us to determine that phosphorylation has an increase in the affinity of these peptides towards aluminum, although the interaction is not as strong as well-known chelators of aluminum in biological systems. Finally, the presence of hydroxides in the first solvation layer has a clear damping effect on the binding affinities. Our results help in elucidating the potential structures than can be formed between this exogenous neurotoxic metal and key sequences for the formation of neurofilament tangles, which are behind of some of the most important degenerative diseases.
采用经典分子动力学模拟和密度泛函理论,揭示了铝与人类神经丝中(NFM)主要多磷酸化结构域片段 KSPVPKSPVEEKG(NF13)的各种磷酸化衍生物的相互作用。我们的计算揭示了所得结构的丰富配位化学性质,铝明显倾向于形成多齿结构,充当不同侧链之间的桥接剂,并改变结合部位周围的局部二级结构。我们对结合能的评估表明,磷酸化增加了这些肽对铝的亲和力,尽管这种相互作用不如生物系统中铝的已知螯合剂强。最后,在第一层溶剂化层中存在的氢氧化物对结合亲和力有明显的阻尼作用。我们的研究结果有助于阐明这种外源性神经毒性金属与神经丝缠结形成关键序列之间可能形成的结构,这些结构是一些最重要的退行性疾病的基础。