Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico.
CONACYT-Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico.
Biomolecules. 2020 Jul 15;10(7):1050. doi: 10.3390/biom10071050.
Therapeutic strategies for the treatment of any severe disease are based on the discovery and validation of druggable targets. The human genome encodes only 600-1500 targets for small-molecule drugs, but posttranslational modifications lead to a considerably larger druggable proteome. The spontaneous conversion of asparagine (Asn) residues to aspartic acid or isoaspartic acid is a frequent modification in proteins as part of the process called deamidation. Triosephosphate isomerase (TIM) is a glycolytic enzyme whose deamidation has been thoroughly studied, but the prospects of exploiting this phenomenon for drug design remain poorly understood. The purpose of this study is to demonstrate the properties of deamidated human TIM (HsTIM) as a selective molecular target. Using in silico prediction, in vitro analyses, and a bacterial model lacking the gene, this study analyzed the structural and functional differences between deamidated and nondeamidated HsTIM, which account for the efficacy of this protein as a druggable target. The highly increased permeability and loss of noncovalent interactions of deamidated TIM were found to play a central role in the process of selective enzyme inactivation and methylglyoxal production. This study elucidates the properties of deamidated HsTIM regarding its selective inhibition by thiol-reactive drugs and how these drugs can contribute to the development of cell-specific therapeutic strategies for a variety of diseases, such as COVID-19 and cancer.
治疗任何严重疾病的策略都基于可药用靶点的发现和验证。人类基因组仅编码 600-1500 个小分子药物靶点,但翻译后修饰导致可药用蛋白质组显著增大。天冬酰胺(Asn)残基自发转化为天冬氨酸或异天冬氨酸是蛋白质中一种常见的修饰,属于脱酰胺化过程。磷酸丙糖异构酶(TIM)是一种糖酵解酶,其脱酰胺化已得到深入研究,但利用这一现象进行药物设计的前景仍知之甚少。本研究旨在证明脱酰胺化人 TIM(HsTIM)作为选择性分子靶标的特性。本研究使用计算机预测、体外分析和缺乏 基因的细菌模型,分析了脱酰胺化和非脱酰胺化 HsTIM 之间的结构和功能差异,这些差异解释了该蛋白作为可药用靶标的功效。研究发现,脱酰胺化 TIM 的通透性显著增加和非共价相互作用丧失在选择性酶失活和甲基乙二醛产生过程中起核心作用。本研究阐明了脱酰胺化 HsTIM 的特性,以及其对硫醇反应性药物的选择性抑制作用,以及这些药物如何有助于为 COVID-19 和癌症等多种疾病开发细胞特异性治疗策略。