Departments of Laboratory Medicine and Medicine, University of California, San Francisco, 4150 Clement St., San Francisco, CA, 94121, USA.
Department of Laboratory Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA.
J Neurovirol. 2020 Dec;26(6):880-887. doi: 10.1007/s13365-020-00877-6. Epub 2020 Jul 17.
Our objective was to predict HIV-associated neurocognitive disorder (HAND) in HIV-infected people using plasma neuronal extracellular vesicle (nEV) proteins, clinical data, and machine learning. We obtained 60 plasma samples from 38 women and 22 men, all with HIV infection and 40 with HAND. All underwent neuropsychological testing. nEVs were isolated by immunoadsorption with neuron-specific L1CAM antibody. High-mobility group box 1 (HMGB1), neurofilament light (NFL), and phosphorylated tau-181 (p-T181-tau) proteins were quantified by ELISA. Three different computational algorithms were performed to predict cognitive impairment using clinical data and nEV proteins. Of the 3 different algorithms, support vector machines performed the best. Applying 4 different models of clinical data with 3 nEV proteins, we showed that selected clinical data and HMGB1 plus NFL best predicted cognitive impairment with an area under the curve value of 0.82. The most important features included CD4 count, HMGB1, and NFL. Previous published data showed nEV p-T181-tau was elevated in Alzheimer's disease (AD), and in this study, p-T181-tau had no importance in assessing HAND but may actually differentiate it from AD. Machine learning can access data without programming bias. Identifying a few nEV proteins plus key clinical variables can better predict neuronal damage. This approach may differentiate other neurodegenerative diseases and determine recovery after therapies are identified.
我们的目标是使用血浆神经元细胞外囊泡(nEV)蛋白、临床数据和机器学习来预测 HIV 感染者的 HIV 相关神经认知障碍(HAND)。我们从 38 名女性和 22 名男性中获得了 60 个血浆样本,所有样本均感染了 HIV,其中 40 名患有 HAND。所有患者均接受了神经心理学测试。nEV 通过神经元特异性 L1CAM 抗体免疫吸附法分离。通过 ELISA 定量测定高迁移率族蛋白 B1(HMGB1)、神经丝轻链(NFL)和磷酸化 tau-181(p-T181-tau)蛋白。使用临床数据和 nEV 蛋白,采用三种不同的计算算法来预测认知障碍。在三种不同的算法中,支持向量机的性能最佳。应用 4 种不同的临床数据模型和 3 种 nEV 蛋白,我们发现选定的临床数据和 HMGB1 加 NFL 可最佳预测认知障碍,曲线下面积值为 0.82。最重要的特征包括 CD4 计数、HMGB1 和 NFL。之前的发表数据显示,阿尔茨海默病(AD)患者的 nEV p-T181-tau 升高,而在本研究中,p-T181-tau 在评估 HAND 方面并不重要,但可能实际上将其与 AD 区分开。机器学习可以访问无编程偏见的数据。确定少数 nEV 蛋白加上关键临床变量可以更好地预测神经元损伤。这种方法可以区分其他神经退行性疾病,并确定治疗后是否可以恢复。