School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China.
Key Lab of Chemical Engineering and Processing in Shandong Province, Yantai University, Yantai 264005, PR China.
J Colloid Interface Sci. 2020 Nov 15;580:171-179. doi: 10.1016/j.jcis.2020.06.115. Epub 2020 Jul 4.
Realizing highly effective and selective enrichment of radioactive Cs(I) in complex environmental systems and exploring the microscale adsorption mechanism of Cs(I) on adsorbing material is the key point for developing highly efficient materials for Cs(I) adsorption. In addition, the low cytotoxicity of materials is essential for practical applications and environmental protection. In this study, the controlled assembly of bentonite carrier with a highly selective substance of Cs(I) is prepared by in-situ synthesis method in order to construct a low-toxic functional clay material with high adsorption capacity and selectivity of Cs(I) in complex environmental systems. The efficiency of the zinc hexacyanoferrate(III)-grafted magnetic bentonite (denoted as ZHF/MB) composite was evaluated in adsorption isotherm studies, kinetics analyses, and selectivity tests by using the batch technique. The toxicity of the ZHF/MB composite was evaluated through in vitro cytotoxicity assays using human hepatic cells (HepG2 cells). The results revealed that the ZHF/MB composite had not only a higher adsorption capacity (1.638 mmol/g, 60 °C) for Cs ions than a number of other natural and manmade materials but also no cytotoxicity in human cells. In addition, the ZHF/MB composite showed excellent selectivity for Cs with a removal efficiency of over 90% from solution (m/V = 0.4 g/L, [M] = 10 mg/L, M= Cs, Ni,Sr, Co). The promising safe toxicology profile, remarkable Cs adsorption efficiency, and excellent selectivity of the ZHF/MB composite demonstrate its great potential for using as a decorporation agent for radioactive cesium remediation. The implementation of this research will provide new adsorption materials and method for radioactive Cs(I) waste management.
实现放射性 Cs(I) 在复杂环境体系中高效、选择性的富集,并探索 Cs(I) 在吸附材料上的微观吸附机制,是开发高效 Cs(I) 吸附材料的关键。此外,材料的低细胞毒性对于实际应用和环境保护至关重要。在这项研究中,通过原位合成方法制备了具有高选择性 Cs(I) 的膨润土载体的可控组装体,以便在复杂环境体系中构建一种具有高 Cs(I) 吸附容量和选择性的低毒功能粘土材料。通过批量技术,利用吸附等温线研究、动力学分析和选择性测试,评估了锌铁氰化钾(III)接枝磁性膨润土(记为 ZHF/MB)复合材料的效率。通过体外细胞毒性测定法(使用人肝细胞(HepG2 细胞))评估了 ZHF/MB 复合材料的毒性。结果表明,ZHF/MB 复合材料不仅对 Cs 离子具有更高的吸附容量(1.638 mmol/g,60°C),而且在人细胞中没有细胞毒性。此外,ZHF/MB 复合材料对 Cs 具有优异的选择性,从溶液中去除效率超过 90%(m/V=0.4 g/L,[M]=10 mg/L,M=Cs、Ni、Sr、Co)。ZHF/MB 复合材料具有良好的安全毒理学特性、显著的 Cs 吸附效率和优异的选择性,表明其在放射性铯修复作为脱除剂具有巨大的应用潜力。这项研究的实施将为放射性 Cs(I) 废物管理提供新的吸附材料和方法。