Suppr超能文献

基于 ICD-10-CM 索赔的癫痫和发作类型定义的准确性。

Accuracy of ICD-10-CM claims-based definitions for epilepsy and seizure type.

机构信息

Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.

Research and New Therapies, Epilepsy Foundation, 8301 Professional Place West, Suite 230, Landover, MD, 20785, USA.

出版信息

Epilepsy Res. 2020 Oct;166:106414. doi: 10.1016/j.eplepsyres.2020.106414. Epub 2020 Jul 11.

Abstract

OBJECTIVE

To evaluate the accuracy of ICD-10-CM claims-based definitions for epilepsy and classifying seizure types in the outpatient setting.

METHODS

We reviewed electronic health records (EHR) for a cohort of adults aged 18+ years seen by six neurologists who had an outpatient visit at a level 4 epilepsy center between 01/2019-09/2019. The neurologists used a standardized documentation template to capture the diagnosis of epilepsy (yes/no/unsure), seizure type (focal/generalized/unknown), and seizure frequency in the EHR. Using linked ICD-10-CM codes assigned by the provider, we assessed the accuracy of claims-based definitions for epilepsy, focal seizure type, and generalized seizure type against the reference-standard EHR documentation by estimating sensitivity (Sn), specificity (Sp), positive predictive value (PPV), and negative predictive value (NPV).

RESULTS

There were 673 eligible outpatient encounters. After review of EHRs for standardized documentation, an analytic sample consisted of 520 encounters representing 402 unique patients. In the EHR documentation, 93.5 % (n = 486/520) of encounters were with patients with a diagnosis of epilepsy. Of those, 66.0 % (n = 321/486) had ≥1 focal seizure, 41.6 % (n = 202/486) had ≥1 generalized seizure, and 7% (n = 34/486) had ≥1 unknown seizure. An ICD-10-CM definition for epilepsy (i.e., ICD-10 G40.X) achieved Sn = 84.4 % (95 % CI 80.8-87.5%), Sp = 79.4 % (95 % CI 62.1-91.3%), PPV = 98.3 % (95 % CI 96.6-99.3%), and NPV = 26.2 % (95 % CI 18.0-35.8%). The classification of focal vs generalized/unknown seizures achieved Sn = 69.8 % (95 % CI 64.4-74.8%), Sp = 79.4 % (95 % CI 72.4-85.3%), PPV = 86.8 % (95 % CI 82.1-90.7%), and NPV = 57.5 % (95 % CI 50.8-64.0%).

CONCLUSIONS

Claims-based definitions using groups of ICD-10-CM codes assigned by neurologists in routine outpatient clinic visits at a level 4 epilepsy center performed well in discriminating between patients with and without a diagnosis of epilepsy and between seizure types.

摘要

目的

评估基于 ICD-10-CM 索赔的癫痫定义和分类门诊发作类型的准确性。

方法

我们回顾了在 2019 年 1 月至 2019 年 9 月期间,在一家四级癫痫中心就诊的六名神经科医生的门诊就诊的成年人队列的电子健康记录 (EHR)。神经科医生使用标准化的文档模板来捕获 EHR 中的癫痫(是/否/不确定)、发作类型(局灶性/全面性/未知)和发作频率的诊断。使用提供者分配的链接 ICD-10-CM 代码,我们通过估计敏感性 (Sn)、特异性 (Sp)、阳性预测值 (PPV) 和阴性预测值 (NPV),评估基于索赔的癫痫、局灶性发作类型和全面性发作类型的定义与参考标准 EHR 文档的准确性。

结果

共有 673 例符合条件的门诊就诊。在对 EHR 进行标准化记录审查后,分析样本包括 520 例就诊,代表 402 例独特患者。在 EHR 记录中,93.5%(n=486/520)的就诊患者被诊断为癫痫。其中,66.0%(n=321/486)有≥1 次局灶性发作,41.6%(n=202/486)有≥1 次全面性发作,7%(n=34/486)有≥1 次未知发作。ICD-10-CM 癫痫定义(即 ICD-10 G40.X)的 Sn 为 84.4%(95%CI 80.8-87.5%),Sp 为 79.4%(95%CI 62.1-91.3%),PPV 为 98.3%(95%CI 96.6-99.3%),NPV 为 26.2%(95%CI 18.0-35.8%)。局灶性与全面性/未知发作的分类的 Sn 为 69.8%(95%CI 64.4-74.8%),Sp 为 79.4%(95%CI 72.4-85.3%),PPV 为 86.8%(95%CI 82.1-90.7%),NPV 为 57.5%(95%CI 50.8-64.0%)。

结论

在四级癫痫中心的常规门诊就诊中,使用神经科医生分配的 ICD-10-CM 代码组的基于索赔的定义在区分有和无癫痫诊断的患者以及区分发作类型方面表现良好。

相似文献

1
Accuracy of ICD-10-CM claims-based definitions for epilepsy and seizure type.
Epilepsy Res. 2020 Oct;166:106414. doi: 10.1016/j.eplepsyres.2020.106414. Epub 2020 Jul 11.
2
How accurate is ICD coding for epilepsy?
Epilepsia. 2010 Jan;51(1):62-9. doi: 10.1111/j.1528-1167.2009.02201.x. Epub 2009 Jul 20.
3
ICD-10 diagnosis codes in electronic health records do not adequately capture fracture complexity for proximal humerus fractures.
J Shoulder Elbow Surg. 2024 Feb;33(2):417-424. doi: 10.1016/j.jse.2023.08.022. Epub 2023 Sep 27.
5
Validation of body mass index (BMI)-related ICD-9-CM and ICD-10-CM administrative diagnosis codes recorded in US claims data.
Pharmacoepidemiol Drug Saf. 2018 Oct;27(10):1092-1100. doi: 10.1002/pds.4617. Epub 2018 Jul 12.
6
Using ICD-10 codes to identify elective epilepsy monitoring unit admissions from administrative billing data: A validation study.
Epilepsy Behav. 2020 Oct;111:107194. doi: 10.1016/j.yebeh.2020.107194. Epub 2020 Jun 10.
8
Challenges of Using ICD-9-CM and ICD-10-CM Codes for Soft-Tissue Sarcoma in Databases for Health Services Research.
Perspect Health Inf Manag. 2019 Apr 1;16(Spring):1a. eCollection 2019 Spring.
9
Development and validation of a case definition for epilepsy for use with administrative health data.
Epilepsy Res. 2012 Dec;102(3):173-9. doi: 10.1016/j.eplepsyres.2012.05.009. Epub 2012 Jun 22.

引用本文的文献

1
Portrait of Epilepsy on the Canvas of Global Health.
Epilepsy Curr. 2025 Jun 25:15357597251352422. doi: 10.1177/15357597251352422.
3
How Reliable Is the G41 Discharge Code for Status Epilepticus?
Brain Behav. 2025 Mar;15(3):e70443. doi: 10.1002/brb3.70443.
4
Polygenic Risk of Epilepsy and Poststroke Epilepsy.
Stroke. 2024 Dec;55(12):2835-2843. doi: 10.1161/STROKEAHA.124.047459. Epub 2024 Nov 6.
5
Incident Epilepsy Among US Medicare Beneficiaries, 2019: Differences by Age, Sex, and Race/Ethnicity.
Neurology. 2024 Oct 8;103(7):e209804. doi: 10.1212/WNL.0000000000209804. Epub 2024 Sep 9.
6
Excess prevalence of preexisting chronic conditions in older adults with incident epilepsy.
Epilepsia. 2024 Aug;65(8):2354-2367. doi: 10.1111/epi.18032. Epub 2024 Jun 4.
7
Use of Healthcare Claims Data to Generate Real-World Evidence on Patients With Drug-Resistant Epilepsy: Practical Considerations for Research.
J Health Econ Outcomes Res. 2024 Feb 27;11(1):57-66. doi: 10.36469/001c.91991. eCollection 2024.
8
Real-world antiseizure medication treatment outcomes in drug-resistant focal epilepsy patients.
Epilepsia Open. 2023 Dec;8(4):1556-1565. doi: 10.1002/epi4.12845. Epub 2023 Oct 31.
9
Hospital EEG Capability and Associations With Interhospital Transfer in Status Epilepticus.
Neurol Clin Pract. 2023 Apr;13(2):e200143. doi: 10.1212/CPJ.0000000000200143. Epub 2023 Mar 16.
10
Identification of patients with epilepsy using automated electronic health records phenotyping.
Epilepsia. 2023 Jun;64(6):1472-1481. doi: 10.1111/epi.17589. Epub 2023 Apr 4.

本文引用的文献

1
High health care costs in minority groups of older US Medicare beneficiaries with epilepsy.
Epilepsia. 2019 Jul;60(7):1462-1471. doi: 10.1111/epi.16051. Epub 2019 Jun 6.
3
Claims data analyses unable to properly characterize the value of neurologists in epilepsy care.
Neurology. 2019 Feb 26;92(9):e973-e987. doi: 10.1212/WNL.0000000000007004. Epub 2019 Jan 23.
4
Quality improvement in neurology: Epilepsy Quality Measurement Set 2017 update.
Neurology. 2018 Oct 30;91(18):829-836. doi: 10.1212/WNL.0000000000006425. Epub 2018 Oct 3.
5
The road to quality: Paved with more than good intentions.
Neurology. 2018 Oct 30;91(18):817-819. doi: 10.1212/WNL.0000000000006418. Epub 2018 Oct 3.
6
Close to 1 million US adults aged 55 years or older have active epilepsy-National Health Interview Survey, 2010, 2013, and 2015.
Epilepsy Behav. 2018 Oct;87:233-234. doi: 10.1016/j.yebeh.2018.06.030. Epub 2018 Aug 2.
7
National and State Estimates of the Numbers of Adults and Children with Active Epilepsy - United States, 2015.
MMWR Morb Mortal Wkly Rep. 2017 Aug 11;66(31):821-825. doi: 10.15585/mmwr.mm6631a1.
8
ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology.
Epilepsia. 2017 Apr;58(4):512-521. doi: 10.1111/epi.13709. Epub 2017 Mar 8.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验