Institute of Applied Mathematics, Heidelberg University, Heidelberg, Germany.
Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany.
PLoS Comput Biol. 2020 Jul 20;16(7):e1007523. doi: 10.1371/journal.pcbi.1007523. eCollection 2020 Jul.
Coordination of fate transition and cell division is crucial to maintain the plant architecture and to achieve efficient production of plant organs. In this paper, we analysed the stem cell dynamics at the shoot apical meristem (SAM) that is one of the plant stem cells locations. We designed a mathematical model to elucidate the impact of hormonal signaling on the fate transition rates between different zones corresponding to slowly dividing stem cells and fast dividing transit amplifying cells. The model is based on a simplified two-dimensional disc geometry of the SAM and accounts for a continuous displacement towards the periphery of cells produced in the central zone. Coupling growth and hormonal signaling results in a nonlinear system of reaction-diffusion equations on a growing domain with the growth rate depending on the model components. The model is tested by simulating perturbations in the level of key transcription factors that maintain SAM homeostasis. The model provides new insights on how the transcription factor HECATE is integrated in the regulatory network that governs stem cell differentiation.
命运转变和细胞分裂的协调对于维持植物结构和实现植物器官的高效生产至关重要。在本文中,我们分析了位于植物干细胞位置之一的茎尖分生组织(SAM)中的干细胞动态。我们设计了一个数学模型,阐明激素信号对不同区域之间命运转变率的影响,这些区域对应于缓慢分裂的干细胞和快速分裂的过渡扩增细胞。该模型基于 SAM 的简化二维圆盘几何形状,并考虑了在中央区域产生的细胞向边缘的连续位移。生长和激素信号的耦合导致在生长域上具有反应-扩散方程的非线性系统,其中生长速率取决于模型成分。通过模拟维持 SAM 动态平衡的关键转录因子水平的扰动来测试模型。该模型提供了关于转录因子 HECATE 如何整合到调控干细胞分化的调控网络中的新见解。