Yu Shicheng, Xu Qi, Tsai Chih-Long, Hoffmeyer Marija, Lu Xin, Ma Qianli, Tempel Hermann, Kungl Hans, Wiemhöfer Hans-D, Eichel Rüdiger-A
Institut für Energie- und Klimaforschung (IEK-9: Grundlagen der Elektrochemie), Forschungszentrum Jülich, D-52425 Jülich, Germany.
Institut für Materialien und Prozesse für elektrochemische Energiespeicher- und wandler, RWTH Aachen University, D-52074 Aachen, Germany.
ACS Appl Mater Interfaces. 2020 Aug 19;12(33):37067-37078. doi: 10.1021/acsami.0c07523. Epub 2020 Aug 5.
The rational design and exploration of safe, robust, and inexpensive energy storage systems with high flexibility are greatly desired for integrated wearable electronic devices. Herein, a flexible all-solid-state battery possessing competitive electrochemical performance and mechanical stability has been realized by easy manufacture processes using carbon nanotube enhanced phosphate electrodes of LiTi(PO) and LiV(PO) and a highly conductive solid polymer electrolyte made of polyphosphazene/PVDF-HFP/LiBOB [PVDF-HFP, poly(vinylidene fluoride--hexafluoropropylene)]. The components were chosen based on their low toxicity, systematic manufacturability, and (electro-)chemical matching in order to ensure ambient atmosphere battery assembly and to reach high flexibility, good safety, effective interfacial contacts, and high chemical and mechanical stability for the battery while in operation. The high energy density of the electrodes was enabled by a novel design of the self-standing anode and cathode in a way that a large amount of active particles are embedded in the carbon nanotube (CNT) bunches and on the surface of CNT fabric, without binder additive, additional carbon, or a large metallic current collector. The electrodes showed outstanding performance individually in half-cells with liquid and polymer electrolyte, respectively. The prepared flexible all-solid-state battery exhibited good rate capability, and more than half of its theoretical capacity can be delivered even at 1C at 30 °C. Moreover, the capacity retentions are higher than 75% after 200 cycles at different current rates, and the battery showed smaller capacity fading after cycling at 50 °C. Furthermore, the promising practical possibilities of the battery concept and fabrication method were demonstrated by a prototype laminated flexible cell.
对于集成可穿戴电子设备而言,迫切需要合理设计和探索具有高柔韧性的安全、坚固且廉价的能量存储系统。在此,通过使用碳纳米管增强的LiTi(PO)和LiV(PO)磷酸盐电极以及由聚磷腈/PVDF-HFP/LiBOB[PVDF-HFP,聚(偏二氟乙烯-六氟丙烯)]制成的高导电固体聚合物电解质的简单制造工艺,实现了具有竞争性电化学性能和机械稳定性的柔性全固态电池。选择这些组件是基于它们的低毒性、系统可制造性以及(电)化学匹配性,以确保在环境大气中进行电池组装,并使电池在运行时具有高柔韧性、良好的安全性、有效的界面接触以及高化学和机械稳定性。电极的高能量密度是通过自立式阳极和阴极的新颖设计实现的,即大量活性颗粒嵌入碳纳米管(CNT)束中以及CNT织物表面,无需粘结剂添加剂、额外的碳或大型金属集流体。电极分别在含有液体电解质和聚合物电解质的半电池中表现出优异的性能。制备的柔性全固态电池具有良好的倍率性能,即使在30℃下以1C的电流倍率放电,也能释放出超过其理论容量一半以上的电量。此外,在不同电流倍率下进行200次循环后,容量保持率高于75%,并且电池在50℃下循环后容量衰减较小。此外,通过原型层压柔性电池展示了该电池概念和制造方法具有广阔的实际应用前景。