Suppr超能文献

具有改善界面相容性的整体式全磷固态锂离子电池。

Monolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility.

机构信息

Institut für Energie- und Klimaforschung (IEK-9: Grundlagen der Elektrochemie) , Forschungszentrum Jülich , D-52425 Jülich , Germany.

Institut für Materialien und Prozesse für elektrochemische Energiespeicher- und wandler , RWTH Aachen University , D-52074 Aachen , Germany.

出版信息

ACS Appl Mater Interfaces. 2018 Jul 5;10(26):22264-22277. doi: 10.1021/acsami.8b05902. Epub 2018 Jun 22.

Abstract

High interfacial resistance between solid electrolyte and electrode of ceramic all-solid-state batteries is a major reason for the reduced performance of these batteries. A solid-state battery using a monolithic all-phosphate concept based on screen printed thick LiTi(PO) anode and LiV(PO) cathode composite layers on a densely sintered LiAlTi(PO) solid electrolyte has been realized with competitive cycling performance. The choice of materials was primarily based on the (electro-)chemical and mechanical matching of the components instead of solely focusing on high-performance of individual components. Thus, the battery utilized a phosphate backbone in combination with tailored morphology of the electrode materials to ensure good interfacial matching for a durable mechanical stability. Moreover, the operating voltage range of the active materials matches with the intrinsic electrochemical window of the electrolyte which resulted in high electrochemical stability. A highly competitive discharge capacity of 63.5 mAh g at 0.39 C after 500 cycles, corresponding to 84% of the initial discharge capacity, was achieved. The analysis of interfacial charge transfer kinetics confirmed the structural and electrical properties of the electrodes and their interfaces with the electrolyte, as evidenced by the excellent cycling performance of the all-phosphate solid-state battery. These interfaces have been studied via impedance analysis with subsequent distribution of relaxation times analysis. Moreover, the prepared solid-state battery could be processed and operated in air atmosphere owing to the low oxygen sensitivity of the phosphate materials. The analysis of electrolyte/electrode interfaces after cycling demonstrates that the interfaces remained stable during cycling.

摘要

固态全电池中固体电解质与电极之间存在高界面电阻,是降低这些电池性能的主要原因。本研究通过致密烧结的 LiAlTi(PO)固体电解质上的丝网印刷厚 LiTi(PO)阳极和 LiV(PO)阴极复合层,实现了基于整体磷酸盐概念的固态全电池,具有竞争力的循环性能。材料的选择主要基于组件的(电)化学和机械匹配,而不是仅仅关注单个组件的高性能。因此,电池利用磷酸盐骨架结合电极材料的定制形态,确保了良好的界面匹配,从而实现了耐用的机械稳定性。此外,活性材料的工作电压范围与电解质的固有电化学窗口相匹配,从而实现了高电化学稳定性。在 500 次循环后,以 0.39 C 的倍率进行测试,电池的放电比容量达到 63.5 mAh g,为初始放电容量的 84%。界面电荷转移动力学分析证实了电极及其与电解质的界面的结构和电学性能,这也证明了全磷酸盐固态电池具有优异的循环性能。这些界面通过阻抗分析和随后的弛豫时间分布分析进行了研究。此外,由于磷酸盐材料的低氧敏性,所制备的固态电池可以在空气气氛中进行加工和操作。对循环后的电解质/电极界面进行分析表明,界面在循环过程中保持稳定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验