Richter Jonas, Jin Fengping, Knipschild Lars, De Raedt Hans, Michielsen Kristel, Gemmer Jochen, Steinigeweg Robin
Department of Physics, University of Osnabrück, D-49069 Osnabrück, Germany.
Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich, Germany.
Phys Rev E. 2020 Jun;101(6-1):062133. doi: 10.1103/PhysRevE.101.062133.
Given a quantum many-body system and the expectation-value dynamics of some operator, we study how this reference dynamics is altered due to a perturbation of the system's Hamiltonian. Based on projection operator techniques, we unveil that if the perturbation exhibits a random-matrix structure in the eigenbasis of the unperturbed Hamiltonian, then this perturbation effectively leads to an exponential damping of the original dynamics. Employing a combination of dynamical quantum typicality and numerical linked cluster expansions, we demonstrate that our theoretical findings for random matrices can, in some cases, be relevant for the dynamics of realistic quantum many-body models as well. Specifically, we study the decay of current autocorrelation functions in spin-1/2 ladder systems, where the rungs of the ladder are treated as a perturbation to the otherwise uncoupled legs. We find a convincing agreement between the exact dynamics and the lowest-order prediction over a wide range of interchain couplings.
给定一个量子多体系统以及某个算符的期望值动力学,我们研究由于系统哈密顿量的微扰,这种参考动力学是如何改变的。基于投影算符技术,我们揭示出如果微扰在未受微扰哈密顿量的本征基中呈现随机矩阵结构,那么这种微扰会有效地导致原始动力学的指数衰减。通过结合动力学量子典型性和数值链接簇展开,我们证明在某些情况下,我们关于随机矩阵的理论发现对于现实的量子多体模型的动力学也可能是相关的。具体而言,我们研究了自旋 - 1/2 梯子系统中电流自相关函数的衰减,其中梯子的横杆被视为对原本未耦合的竖杆的微扰。我们发现在广泛的链间耦合范围内,精确动力学与最低阶预测之间存在令人信服的一致性。