Suppr超能文献

物理增强神经网络学习秩序与混沌。

Physics-enhanced neural networks learn order and chaos.

作者信息

Choudhary Anshul, Lindner John F, Holliday Elliott G, Miller Scott T, Sinha Sudeshna, Ditto William L

机构信息

Nonlinear Artificial Intelligence Laboratory, Physics Department, North Carolina State University, Raleigh, North Carolina 27607, USA.

Physics Department, The College of Wooster, Wooster, Ohio 44691, USA.

出版信息

Phys Rev E. 2020 Jun;101(6-1):062207. doi: 10.1103/PhysRevE.101.062207.

Abstract

Artificial neural networks are universal function approximators. They can forecast dynamics, but they may need impractically many neurons to do so, especially if the dynamics is chaotic. We use neural networks that incorporate Hamiltonian dynamics to efficiently learn phase space orbits even as nonlinear systems transition from order to chaos. We demonstrate Hamiltonian neural networks on a widely used dynamics benchmark, the Hénon-Heiles potential, and on nonperturbative dynamical billiards. We introspect to elucidate the Hamiltonian neural network forecasting.

摘要

人工神经网络是通用函数逼近器。它们可以预测动力学,但可能需要多得不切实际的神经元才能做到,特别是如果动力学是混沌的。我们使用结合哈密顿动力学的神经网络,即使非线性系统从有序过渡到混沌,也能有效地学习相空间轨道。我们在广泛使用的动力学基准——亨农-海尔斯势以及非微扰动力学台球上展示了哈密顿神经网络。我们进行反思以阐明哈密顿神经网络预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验