Suppr超能文献

神经元多样性可以改进用于物理学及其他领域的机器学习。

Neuronal diversity can improve machine learning for physics and beyond.

作者信息

Choudhary Anshul, Radhakrishnan Anil, Lindner John F, Sinha Sudeshna, Ditto William L

机构信息

Nonlinear Artificial Intelligence Laboratory, Physics Department, North Carolina State University, Raleigh, NC, 27607, USA.

The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.

出版信息

Sci Rep. 2023 Aug 26;13(1):13962. doi: 10.1038/s41598-023-40766-6.

Abstract

Diversity conveys advantages in nature, yet homogeneous neurons typically comprise the layers of artificial neural networks. Here we construct neural networks from neurons that learn their own activation functions, quickly diversify, and subsequently outperform their homogeneous counterparts on image classification and nonlinear regression tasks. Sub-networks instantiate the neurons, which meta-learn especially efficient sets of nonlinear responses. Examples include conventional neural networks classifying digits and forecasting a van der Pol oscillator and physics-informed Hamiltonian neural networks learning Hénon-Heiles stellar orbits and the swing of a video recorded pendulum clock. Such learned diversity provides examples of dynamical systems selecting diversity over uniformity and elucidates the role of diversity in natural and artificial systems.

摘要

多样性在自然界中具有优势,但人工神经网络的各层通常由同质化的神经元组成。在这里,我们用能够学习自身激活函数、快速实现多样化并随后在图像分类和非线性回归任务中超越其同质化对应物的神经元构建神经网络。子网络实例化神经元,这些神经元元学习特别高效的非线性响应集。示例包括对数字进行分类的传统神经网络、预测范德波尔振荡器,以及学习海恩-希尔斯恒星轨道和视频记录的摆钟摆动的物理信息哈密顿神经网络。这种通过学习获得的多样性提供了动态系统选择多样性而非一致性的示例,并阐明了多样性在自然和人工系统中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fb/10460398/9a874e05a167/41598_2023_40766_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验