Suppr超能文献

通过对短时波动电流进行机器学习来估计熵产生

Estimating entropy production by machine learning of short-time fluctuating currents.

作者信息

Otsubo Shun, Ito Sosuke, Dechant Andreas, Sagawa Takahiro

机构信息

Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0031, Japan.

出版信息

Phys Rev E. 2020 Jun;101(6-1):062106. doi: 10.1103/PhysRevE.101.062106.

Abstract

Thermodynamic uncertainty relations (TURs) are the inequalities which give lower bounds on the entropy production rate using only the mean and the variance of fluctuating currents. Since the TURs do not refer to the full details of the stochastic dynamics, it would be promising to apply the TURs for estimating the entropy production rate from a limited set of trajectory data corresponding to the dynamics. Here we investigate a theoretical framework for estimation of the entropy production rate using the TURs along with machine learning techniques without prior knowledge of the parameters of the stochastic dynamics. Specifically, we derive a TUR for the short-time region and prove that it can provide the exact value, not only a lower bound, of the entropy production rate for Langevin dynamics, if the observed current is optimally chosen. This formulation naturally includes a generalization of the TURs with the partial entropy production of subsystems under autonomous interaction, which reveals the hierarchical structure of the estimation. We then construct estimators on the basis of the short-time TUR and machine learning techniques such as the gradient ascent. By performing numerical experiments, we demonstrate that our learning protocol performs well even in nonlinear Langevin dynamics. We also discuss the case of Markov jump processes, where the exact estimation is shown to be impossible in general. Our result provides a platform that can be applied to a broad class of stochastic dynamics out of equilibrium, including biological systems.

摘要

热力学不确定性关系(TURs)是一类不等式,它们仅利用涨落电流的均值和方差给出熵产生率的下界。由于TURs并不涉及随机动力学的全部细节,因此将TURs应用于从与动力学对应的有限轨迹数据集估计熵产生率是很有前景的。在此,我们研究一种理论框架,用于在无需随机动力学参数先验知识的情况下,结合机器学习技术利用TURs估计熵产生率。具体而言,我们推导了短时间区域的TUR,并证明如果观测电流被最优选择,它不仅能为朗之万动力学的熵产生率提供一个下界,还能给出其精确值。这种表述自然地包含了具有自主相互作用下子系统部分熵产生的TURs的推广,揭示了估计的层次结构。然后,我们基于短时间TUR和机器学习技术(如梯度上升)构建估计器。通过进行数值实验,我们证明即使在非线性朗之万动力学中,我们的学习协议也表现良好。我们还讨论了马尔可夫跳跃过程的情况,其中一般表明精确估计是不可能的。我们的结果提供了一个可应用于包括生物系统在内的广泛非平衡随机动力学类别的平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验