Reiche Daniel, Hsiang Jen-Tsung, Hu Bei-Lok
Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße15, 12489 Berlin, Germany.
Center for High Energy and High Field Physics, National Central University, Taoyuan 320317, Taiwan.
Entropy (Basel). 2022 Jul 23;24(8):1016. doi: 10.3390/e24081016.
Thermodynamic uncertainty relations (TURs) represent one of the few broad-based and fundamental relations in our toolbox for tackling the thermodynamics of nonequilibrium systems. One form of TUR quantifies the minimal energetic cost of achieving a certain precision in determining a nonequilibrium current. In this initial stage of our research program, our goal is to provide the quantum theoretical basis of TURs using microphysics models of linear open quantum systems where it is possible to obtain exact solutions. In paper [Dong et al., Entropy 2022, 24, 870], we show how TURs are rooted in the quantum uncertainty principles and the fluctuation-dissipation inequalities (FDI) under fully nonequilibrium conditions. In this paper, we shift our attention from the quantum basis to the thermal manifests. Using a microscopic model for the bath's spectral density in quantum Brownian motion studies, we formulate a "thermal" FDI in the quantum nonequilibrium dynamics which is valid at high temperatures. This brings the quantum TURs we derive here to the classical domain and can thus be compared with some popular forms of TURs. In the thermal-energy-dominated regimes, our FDIs provide better estimates on the uncertainty of thermodynamic quantities. Our treatment includes full back-action from the environment onto the system. As a concrete example of the generalized current, we examine the energy flux or power entering the Brownian particle and find an exact expression of the corresponding current-current correlations. In so doing, we show that the statistical properties of the bath and the causality of the system+bath interaction both enter into the TURs obeyed by the thermodynamic quantities.
热力学不确定性关系(TURs)是我们处理非平衡系统热力学的工具库中为数不多的具有广泛基础的基本关系之一。TUR的一种形式量化了在确定非平衡电流时达到一定精度所需的最小能量成本。在我们研究计划的这个初始阶段,我们的目标是使用线性开放量子系统的微观物理模型为TURs提供量子理论基础,在该模型中可以获得精确解。在论文[Dong等人,《熵》2022年,第24卷,第870页]中,我们展示了在完全非平衡条件下TURs如何植根于量子不确定性原理和涨落耗散不等式(FDI)。在本文中,我们将注意力从量子基础转移到热表现。利用量子布朗运动研究中浴谱密度的微观模型,我们在量子非平衡动力学中制定了一个在高温下有效的“热”FDI。这将我们在此推导的量子TURs带入经典领域,因此可以与一些流行的TURs形式进行比较。在热能主导的区域,我们的FDI对热力学量的不确定性提供了更好的估计。我们的处理包括环境对系统的完全反作用。作为广义电流的一个具体例子,我们研究进入布朗粒子的能量通量或功率,并找到相应电流 - 电流关联的精确表达式。通过这样做我们表明,浴的统计性质和系统与浴相互作用的因果关系都进入了热力学量所遵循的TURs中。