Zakharov A V, Maslennikov P V, Pasechnik S V
Saint Petersburg Institute for Machine Sciences, The Russian Academy of Sciences, Saint Petersburg 199178, Russia.
Immanuel Kant Baltic Federal University, Kaliningrad 236040, Strasse Universitetskaya 2, Russia.
Phys Rev E. 2020 Jun;101(6-1):062702. doi: 10.1103/PhysRevE.101.062702.
Fluid pumping principle has been developed utilizing the interaction, on the one hand, between the electric field E and the gradient ∇n[over ̂] of the director's field, and, on the other hand, between the ∇n[over ̂] and the temperature ∇T gradient arising in a homogeneously aligned liquid crystal (HALC) microfluidic channel. Calculations, based upon the nonlinear extension of the classical Ericksen-Leslie theory, with accounting the entropy balance equation, show that due to the coupling among the ∇T, ∇n,[over ̂] and E in the HALC microfluidic channel the horizontal flow v=v_{x}i[over ̂]=ui[over ̂] may be excited. The direction and magnitude of v is influenced both by the heat flux q across the microfluidic channel and the strength of the electric field E. The results of calculations showed that the dependence of the maximum value of the equilibrium velocity distribution |u_{max}(E/E_{th})| across the LC channel versus electric field E/E_{th} is characterized by maximum value at E/E_{th}=2.0. In the case when the electric field E≫E_{th}, the horizontal flow of the LC material completely stops and a novel mechanism of converting of the electric field in the form of the kinklike wave reorientation of the director field n[over ̂] can be excited in the LC channel.
流体泵送原理是利用一方面电场E与指向矢场梯度∇n̂之间的相互作用,另一方面∇n̂与在均匀排列液晶(HALC)微流体通道中产生的温度梯度∇T之间的相互作用而开发的。基于经典埃里克森 - 莱斯利理论的非线性扩展并考虑熵平衡方程的计算表明,由于HALC微流体通道中∇T、∇n̂和E之间的耦合,可能会激发水平流v = v_xî = uî。v的方向和大小既受穿过微流体通道的热通量q的影响,也受电场E强度的影响。计算结果表明,液晶通道中平衡速度分布的最大值|u_max(E/E_th)|与电场E/E_th的关系在E/E_th = 2.0时具有最大值。在电场E≫E_th的情况下,液晶材料的水平流完全停止,并且可以在液晶通道中激发一种以指向矢场n̂的扭结状波重新取向形式的电场转换新机制。