Suppr超能文献

一种预测脑出血预后的新模型:基于 1186 例患者。

A novel model for predicting the outcome of intracerebral hemorrhage: Based on 1186 Patients.

机构信息

Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai, 810007, China.

Department of Intensive Care Unit, Jingjiang People's Hospital, the Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu, 214500, China.

出版信息

J Stroke Cerebrovasc Dis. 2020 Aug;29(8):104867. doi: 10.1016/j.jstrokecerebrovasdis.2020.104867. Epub 2020 Jun 8.

Abstract

OBJECTIVE

To establish a model for predicting the outcome according to the clinical and computed tomography(CT) image data of patients with intracerebral hemorrhage(ICH).

METHODS

The clinical and CT image data of the patients with ICH in Qinghai Provincial People's Hospital and Xuzhou Central Hospital were collected. The risk factors related to the poor outcome of the patients were determined by univariate and multivariate logistic regression analysis. To determine the effect of factors related to poor outcome, the nomogram model was made by software of R 3.5.2 and the support vector machine operation was completed by software of SPSS Modelor.

RESULTS

A total of 8265 patients were collected and 1186 patients met the criteria of the study. Age, hospitalization days, blend sign, intraventricular extension, subarachnoid hemorrhage, midline shift, diabetes and baseline hematoma volume were independent predictors of poor outcome. Among these factors, baseline hematoma volume๥20ml (odds ratio:13.706, 95% confidence interval:9.070-20.709, p < 0.001) was the most significant factor for poor outcome, followed by the volume among 10ml-20ml (odds ratio:11.834, 95% confidence interval:7.909-17.707, p < 0.001). It was concluded that the highest percentage of weight in outcome was baseline hematoma volume (25.0%), followed by intraventricular hemorrhage (23.0%).

CONCLUSION

This predictive model might accurately predict the outcome of patients with ICH. It might have a wide range of application prospects in clinical.

摘要

目的

根据脑出血患者的临床和计算机断层扫描(CT)图像数据建立一种预后预测模型。

方法

收集青海省人民医院和徐州市中心医院脑出血患者的临床和 CT 图像数据。通过单因素和多因素逻辑回归分析确定与患者预后不良相关的危险因素。为了确定与不良预后相关的因素的影响,使用 R 3.5.2 软件制作列线图模型,并使用 SPSS Modelor 软件完成支持向量机操作。

结果

共收集了 8265 例患者,其中 1186 例符合研究标准。年龄、住院天数、混合征、脑室内扩展、蛛网膜下腔出血、中线移位、糖尿病和基线血肿量是预后不良的独立预测因素。在这些因素中,基线血肿量大于 20ml(优势比:13.706,95%置信区间:9.070-20.709,p<0.001)是预后不良的最显著因素,其次是 10ml-20ml 之间的体积(优势比:11.834,95%置信区间:7.909-17.707,p<0.001)。结果表明,预后中权重最高的是基线血肿量(25.0%),其次是脑室内出血(23.0%)。

结论

该预测模型可准确预测脑出血患者的预后,在临床应用方面具有广阔的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验