Neurosurgical Unit, Ospedale Spirito Santo, Pescara, Italy.
Department of Neurosciences, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy.
Neurosurg Rev. 2022 Aug;45(4):2857-2867. doi: 10.1007/s10143-022-01802-7. Epub 2022 May 6.
Spontaneous intracerebral hemorrhage (ICH) has an increasing incidence and a worse outcome in elderly patients. The ability to predict the functional outcome in these patients can be helpful in supporting treatment decisions and establishing prognostic expectations. We evaluated the performance of a machine learning (ML) model to predict the 6-month functional status in elderly patients with ICH leveraging the predictive value of the clinical characteristics at hospital admission. Data were extracted by a retrospective multicentric database of patients ≥ 70 years of age consecutively admitted for the management of spontaneous ICH between January 1, 2014 and December 31, 2019. Relevant demographic, clinical, and radiological variables were selected by a feature selection algorithm (Boruta) and used to build a ML model. Outcome was determined according to the Glasgow Outcome Scale (GOS) at 6 months from ICH: dead (GOS 1), poor outcome (GOS 2-3: vegetative status/severe disability), and good outcome (GOS 4-5: moderate disability/good recovery). Ten features were selected by Boruta with the following relative importance order in the ML model: Glasgow Coma Scale, Charlson Comorbidity Index, ICH score, ICH volume, pupillary status, brainstem location, age, anticoagulant/antiplatelet agents, intraventricular hemorrhage, and cerebellar location. Random forest prediction model, evaluated on the hold-out test set, achieved an AUC of 0.96 (0.94-0.98), 0.89 (0.86-0.93), and 0.93 (0.90-0.95) for dead, poor, and good outcome classes, respectively, demonstrating high discriminative ability. A random forest classifier was successfully trained and internally validated to stratify elderly patients with spontaneous ICH into prognostic subclasses. The predictive value is enhanced by the ability of ML model to identify synergy among variables.
自发性脑出血 (ICH) 在老年患者中的发病率不断上升,预后更差。能够预测这些患者的功能结局有助于支持治疗决策并建立预后预期。我们评估了机器学习 (ML) 模型在利用入院时临床特征的预测价值的情况下,预测年龄≥70 岁的 ICH 患者 6 个月功能状态的能力。数据由 2014 年 1 月 1 日至 2019 年 12 月 31 日连续收治的自发性 ICH 患者的回顾性多中心数据库提取。通过特征选择算法(Boruta)选择相关的人口统计学、临床和影像学变量,并用于构建 ML 模型。根据 ICH 后 6 个月的格拉斯哥结局量表 (GOS) 确定结局:死亡 (GOS 1)、预后不良 (GOS 2-3:植物状态/重度残疾) 和预后良好 (GOS 4-5:中度残疾/良好恢复)。Boruta 选择了 10 个特征,这些特征在 ML 模型中的相对重要性顺序如下:格拉斯哥昏迷量表、Charlson 合并症指数、ICH 评分、ICH 体积、瞳孔状态、脑干位置、年龄、抗凝/抗血小板药物、脑室内出血和小脑位置。在保留测试集中评估的随机森林预测模型,在死亡、预后不良和预后良好的分类中分别达到 0.96(0.94-0.98)、0.89(0.86-0.93)和 0.93(0.90-0.95)的 AUC,显示出较高的区分能力。成功训练并内部验证了随机森林分类器,以将自发性 ICH 老年患者分层为预后亚组。ML 模型能够识别变量之间的协同作用,从而提高预测值。