Suppr超能文献

利用超疏水微槽突破液滴跳跃能量转换极限

Breaking Droplet Jumping Energy Conversion Limits with Superhydrophobic Microgrooves.

作者信息

Peng Qi, Yan Xiao, Li Jiaqi, Li Longnan, Cha Hyeongyun, Ding Yi, Dang Chao, Jia Li, Miljkovic Nenad

机构信息

School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China.

Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States.

出版信息

Langmuir. 2020 Aug 18;36(32):9510-9522. doi: 10.1021/acs.langmuir.0c01494. Epub 2020 Aug 4.

Abstract

Coalescence-induced droplet jumping has the potential to enhance the performance of a variety of applications including condensation heat transfer, surface self-cleaning, anti-icing, and defrosting to name a few. Here, we study droplet jumping on hierarchical microgrooved and nanostructured smooth superhydrophobic surfaces. We show that the confined microgroove structures play a key role in tailoring droplet coalescence hydrodynamics, which in turn affects the droplet jumping velocity and energy conversion efficiency. We observed self-jumping of individual deformed droplets within microgrooves having maximum surface-to-kinetic energy conversion efficiency of 8%. Furthermore, various coalescence-induced jumping modes were observed on the hierarchical microgrooved superhydrophobic surface. The microgroove structure enabled high droplet jumping velocity (≈0.74) and energy conversion efficiency (≈46%) by enabling the coalescence of deformed droplets in microgrooves with undeformed droplets on adjacent plateaus. The jumping velocity and energy conversion efficiency enhancements are 1.93× and 6.67× higher than traditional coalescence-induced droplet jumping on smooth superhydrophobic surfaces. This work not only demonstrates high droplet jumping velocity and energy conversion efficiency but also demonstrates the key role played by macroscale structures on coalescence hydrodynamics and elucidates a method to further control droplet jumping physics for a plethora of applications.

摘要

聚并诱导的液滴跳跃有潜力提升包括冷凝传热、表面自清洁、防冰和除霜等多种应用的性能。在此,我们研究了液滴在分级微槽和纳米结构光滑超疏水表面上的跳跃。我们表明,受限的微槽结构在定制液滴聚并流体动力学方面起着关键作用,这反过来又影响液滴跳跃速度和能量转换效率。我们观察到在微槽内单个变形液滴的自跳跃,其表面到动能的最大转换效率为8%。此外,在分级微槽超疏水表面上观察到了各种聚并诱导的跳跃模式。微槽结构通过使微槽内的变形液滴与相邻平台上的未变形液滴聚并,实现了较高的液滴跳跃速度(≈0.74)和能量转换效率(≈46%)。与传统的在光滑超疏水表面上聚并诱导的液滴跳跃相比,跳跃速度和能量转换效率的提升分别高出1.93倍和6.67倍。这项工作不仅展示了高液滴跳跃速度和能量转换效率,还展示了宏观结构在聚并流体动力学中所起的关键作用,并阐明了一种进一步控制液滴跳跃物理过程以用于众多应用的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验