Shen Qin, Lin Yuqing, Kawabata Yuki, Jia Yuandong, Zhang Pengfei, Akther Nawshad, Guan Kecheng, Yoshioka Tomohisa, Shon Hokyong, Matsuyama Hideto
Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan.
School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Sydney, NSW 2007, Australia.
ACS Appl Mater Interfaces. 2020 Aug 26;12(34):38662-38673. doi: 10.1021/acsami.0c10301. Epub 2020 Aug 17.
In this study, custom-tailored graphene oxide quantum dots (GOQD) were synthesized as functional nanofillers to be embedded into the polyamide (PA) membrane for reverse osmosis (RO) via interfacial polymerization (IP). The heterostructured interface-functionalization of amine/sulfonic decoration on GOQD (N/S-d-GOQD) takes place via the tuning of the molecular design. The embedded N/S-d-GOQD inside the PA matrix contributes to facilitating water molecules quick transport due to the more accessible capturing sites with higher internal polarity, achieving a nearly 3-fold increase in water permeance when compared to the pristine thin-film composite (TFC) membrane. Covalent bonding between the terminal amine groups and the acyl chloride of trimesoyl chloride (TMC) enables the formation of an amplified selective layer, while the sulfonic part assists in maintaining a robust membrane surface negative charge, thus remarkably improving the membrane selectivity toward NaCl. As a result, the newly developed TFN membrane performed remarkably high water permeance up to 5.89 L m h bar without the compromising of its favorable salt (NaCl) rejection ratio of 97.1%, revealing a comparably high separation property when comparing to the state-of-the-art RO membranes, and surpassing the permeability-selectivity trade-off limits. Furthermore, we systematically investigated the GOQDs with different surface decorations but similar configurations (including 3 different nanofillers of pristine GOQD, amine decorated GOQD (N-d-GOQD), and N/S-d-GOQD) to unveil the underlying mechanisms of the swing effects of internal geometry and polarity of the embedded nanofillers on contributing to the uptake, and/or release of aqueous molecules within TFN membranes, providing a fundamental perspective to investigate the impact of embedded nanofillers on the formation of an IP layer and the overall transporting behavior of the RO process.
在本研究中,定制的氧化石墨烯量子点(GOQD)被合成作为功能性纳米填料,通过界面聚合(IP)嵌入聚酰胺(PA)反渗透(RO)膜中。通过分子设计的调整,实现了GOQD上胺/磺酸修饰的异质结构界面功能化(N/S-d-GOQD)。PA基质中嵌入的N/S-d-GOQD有助于促进水分子的快速传输,因为其具有更多可及的捕获位点且内部极性更高,与原始的薄膜复合(TFC)膜相比,水通量提高了近3倍。末端胺基与均苯三甲酰氯(TMC)的酰氯之间的共价键合能够形成放大的选择层,而磺酸部分有助于维持膜表面强大的负电荷,从而显著提高膜对NaCl的选择性。结果,新开发的TFN膜表现出高达5.89 L m⁻² h⁻¹ bar⁻¹的高水通量,同时不影响其对盐(NaCl)的良好截留率97.1%,与最先进的RO膜相比,具有相当高的分离性能,并且超越了渗透选择性权衡限制。此外,我们系统地研究了具有不同表面修饰但类似构型的GOQD(包括原始GOQD、胺修饰的GOQD(N-d-GOQD)和N/S-d-GOQD这3种不同的纳米填料),以揭示嵌入纳米填料的内部几何形状和极性对TFN膜内水分子吸收和/或释放的摆动效应的潜在机制,为研究嵌入纳米填料对IP层形成和RO过程整体传输行为的影响提供了一个基本视角。