Suppr超能文献

递归沟通动态对信念更新的影响。

The effects of recursive communication dynamics on belief updating.

机构信息

Max Planck Institute for Human Development, 94 Lentzeallee, Berlin 14195, Germany.

Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK.

出版信息

Proc Biol Sci. 2020 Jul 29;287(1931):20200025. doi: 10.1098/rspb.2020.0025. Epub 2020 Jul 22.

Abstract

Many social interactions are characterized by dynamic interplay, such that individuals exert reciprocal influence over each other's behaviours and beliefs. The present study investigated how the dynamics of reciprocal influence affect individual beliefs in a social context, over and above the information communicated in an interaction. To this end, we developed a simple social decision-making paradigm in which two people are asked to make perceptual judgments while receiving information about each other's decisions. In a Static condition, information about the partner only conveyed their initial, independent judgment. However, in a Dynamic condition, each individual saw the evolving belief of their partner as they learnt about and responded to the individual's own judgment. The results indicated that in both conditions, the majority of confidence adjustments were characterized by an abrupt change followed by smaller adjustments around an equilibrium, and that participants' confidence was used to arbitrate conflict (although deviating from Bayesian norm). Crucially, recursive interaction had systematic effects on belief change relative to the static baseline, magnifying confidence change when partners agreed and reducing confidence change when they disagreed. These findings indicate that during dynamic interactions-often a characteristic of real-life and online social contexts-information is collectively transformed rather than acted upon by individuals in isolation. Consequently, the output of social events is not only influenced by what the dyad knows but also by predictable recursive and self-reinforcing dynamics.

摘要

许多社交互动都具有动态相互作用的特点,即个体之间会相互影响彼此的行为和信念。本研究探讨了在社交环境中,相互影响的动态如何在互动中传递的信息之外,影响个体的信念。为此,我们开发了一个简单的社交决策范式,其中两个人被要求在收到关于彼此决策的信息的同时进行感知判断。在静态条件下,有关伙伴的信息仅传达他们最初的独立判断。然而,在动态条件下,每个人都可以看到他们的伙伴的不断变化的信念,因为他们了解并回应自己的判断。结果表明,在两种条件下,大多数置信度调整都以突然变化为特征,随后是围绕平衡点的较小调整,并且参与者的置信度被用于仲裁冲突(尽管偏离了贝叶斯规范)。至关重要的是,递归交互相对于静态基线对信念变化具有系统影响,当伙伴意见一致时会放大置信度变化,而当他们意见不一致时会减少置信度变化。这些发现表明,在动态交互中——通常是现实生活和在线社交环境的特征——信息是集体转化的,而不是个体孤立地行动。因此,社交事件的结果不仅受到双方所知道的影响,而且还受到可预测的递归和自我强化动态的影响。

相似文献

1
The effects of recursive communication dynamics on belief updating.
Proc Biol Sci. 2020 Jul 29;287(1931):20200025. doi: 10.1098/rspb.2020.0025. Epub 2020 Jul 22.
2
The Dynamics of Belief Updating in Human Cooperation: Findings from inter-brain ERP hyperscanning.
Neuroimage. 2019 Sep;198:1-12. doi: 10.1016/j.neuroimage.2019.05.029. Epub 2019 May 11.
3
Neural activity tracking identity and confidence in social information.
Elife. 2023 Feb 10;12:e71315. doi: 10.7554/eLife.71315.
4
The role of decision confidence in advice-taking and trust formation.
J Exp Psychol Gen. 2021 Mar;150(3):507-526. doi: 10.1037/xge0000960. Epub 2020 Oct 1.
5
Inter-relations among negative social control, self-efficacy, and physical activity in healthy couples.
Br J Health Psychol. 2018 Sep;23(3):580-596. doi: 10.1111/bjhp.12305. Epub 2018 Mar 8.
6
Interpersonal relationships modulate outcome evaluation in a social comparison context: The pain and pleasure of intimacy.
Cogn Affect Behav Neurosci. 2020 Feb;20(1):115-127. doi: 10.3758/s13415-019-00756-6.
8
Influence of vmPFC on dmPFC Predicts Valence-Guided Belief Formation.
J Neurosci. 2018 Sep 12;38(37):7996-8010. doi: 10.1523/JNEUROSCI.0266-18.2018. Epub 2018 Aug 13.
9
Integration of individual and social information for decision-making in groups of different sizes.
PLoS Biol. 2017 Jun 28;15(6):e2001958. doi: 10.1371/journal.pbio.2001958. eCollection 2017 Jun.
10
Social Information Is Integrated into Value and Confidence Judgments According to Its Reliability.
J Neurosci. 2017 Jun 21;37(25):6066-6074. doi: 10.1523/JNEUROSCI.3880-16.2017. Epub 2017 May 31.

引用本文的文献

1
Action-based confidence sharing and collective decision making.
iScience. 2024 Sep 20;27(10):111006. doi: 10.1016/j.isci.2024.111006. eCollection 2024 Oct 18.
2
Person-to-person opinion dynamics: An empirical study using an online game.
PLoS One. 2022 Oct 6;17(10):e0275473. doi: 10.1371/journal.pone.0275473. eCollection 2022.
3
A variational-autoencoder approach to solve the hidden profile task in hybrid human-machine teams.
PLoS One. 2022 Aug 2;17(8):e0272168. doi: 10.1371/journal.pone.0272168. eCollection 2022.

本文引用的文献

1
The wisdom of partisan crowds.
Proc Natl Acad Sci U S A. 2019 May 28;116(22):10717-10722. doi: 10.1073/pnas.1817195116. Epub 2019 May 13.
2
Shared responsibility in collective decisions.
Nat Hum Behav. 2019 Jun;3(6):554-559. doi: 10.1038/s41562-019-0596-4. Epub 2019 Apr 22.
3
Social learning and partisan bias in the interpretation of climate trends.
Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):9714-9719. doi: 10.1073/pnas.1722664115. Epub 2018 Sep 4.
4
Exposure to opposing views on social media can increase political polarization.
Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):9216-9221. doi: 10.1073/pnas.1804840115. Epub 2018 Aug 28.
5
How truth wins in opinion dynamics along issue sequences.
Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):11380-11385. doi: 10.1073/pnas.1710603114. Epub 2017 Oct 10.
6
Echo Chambers: Emotional Contagion and Group Polarization on Facebook.
Sci Rep. 2016 Dec 1;6:37825. doi: 10.1038/srep37825.
7
The perceptual and social components of metacognition.
J Exp Psychol Gen. 2016 Aug;145(8):949-65. doi: 10.1037/xge0000180. Epub 2016 Jun 16.
8
The Argumentative Theory: Predictions and Empirical Evidence.
Trends Cogn Sci. 2016 Sep;20(9):689-700. doi: 10.1016/j.tics.2016.07.001. Epub 2016 Jul 21.
9
The Appeal to Expert Opinion: Quantitative Support for a Bayesian Network Approach.
Cogn Sci. 2016 Aug;40(6):1496-533. doi: 10.1111/cogs.12276. Epub 2015 Sep 1.
10
Shared neural markers of decision confidence and error detection.
J Neurosci. 2015 Feb 25;35(8):3478-84. doi: 10.1523/JNEUROSCI.0797-14.2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验