Zdravkovic Vilijam, Alexander Nathalie, Wegener Regina, Spross Christian, Jost Bernhard
V. Zdravkovic, C. Spross, B. Jost, Department of Orthopaedics and Traumatology, Kantonsspital St. Gallen, St. Gallen, Switzerland.
N. Alexander, R. Wegener, Laboratory for Motion Analysis, Department of Paediatric Orthopaedics, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland.
Clin Orthop Relat Res. 2020 Nov;478(11):2640-2649. doi: 10.1097/CORR.0000000000001406.
Rotator cuff arthropathy with loss of active arm elevation can be successfully treated with nonanatomic reverse total shoulder arthroplasty to restore active elevation. Shoulder kinematics in this context predominantly focus on glenohumeral motion, neglecting scapular motion, although both substantially contribute to global shoulder motion. Because scapular kinematics are difficult to assess clinically and in the laboratory, they are not well understood and therefore are often reduced to glenohumeral models with a static scapula.
QUESTIONS/PURPOSES: (1) Does the scapulohumeral rhythm (scapular rotation/glenohumeral elevation ratio) change during arm elevation? (2) Is there any scapular motion before arm elevation becomes clinically visible? (3) How do scapulothoracic kinematics during shoulder elevation differ between adults with and without rotator cuff arthropathy?
This was a comparative kinematics study of 20 young adult volunteers (reference group) without rotator cuff impairment (seven females, 13 males; mean age: 27 ± 3.5 years) and 20 patients (22 shoulders) with cuff tear arthropathy (10 females, 10 males; mean age: 74 ± 6.2 years). We used a three-dimensional (3-D) motion analysis system from Vicom with eight high-speed infrared cameras (frame rate 200 Hz) and 25 skin markers. Kinematics were studied for scapulothoracic and glenohumeral movements using the Upper Limb Evaluation in Movement Analysis (ULEMA) open-source model. The main motion studied was active arm elevation in the scapular plane. After data cleaning, modeling, and normalization, changes of scapulohumeral rhythm and scapular motion at the beginning of arm elevation were analyzed qualitatively, and statistical parametric mapping was applied to study the difference in scapulothoracic kinematics between adults with and without rotator cuff arthropathy.
The scapular rhythm changes continuously during elevation. Whereas in people without rotator cuff arthropathy, a homogenous proportional relative angular contribution between 85° and 120° could be observed, this regular pattern was disturbed in patients with rotator cuff arthropathy. We observed medial scapular rotation before arm elevation became visible, followed by low lateral or even medial scapular rotation (approximately up to 25°) at the beginning of arm elevation. Patients with rotator cuff arthropathy exhibited more scapulothoracic motion between 50° and 93° of elevation than the reference group.
Our study introduces a double-normalized data analysis that allows for a more detailed assessment of complex scapular kinematics in a noninvasive way. Scapulothoracic motion is more complex than previously reported, especially in patients with rotator cuff arthropathy. The scapulohumeral rhythm changes dynamically throughout arm elevation. There is counter-directed scapular rotation because of muscular engagement before clinically visible arm elevation. Compared with the homogenous shoulder kinematics in the reference group, patients with rotator cuff arthropathy show a different pattern with predominantly scapular motion in the range between 50° and 93° of arm elevation.
The findings of this study suggest that there is a specific pattern of scapular motion during arm elevation in patients with rotator cuff arthropathy. Our study introduces a new noninvasive method that allows for simultaneous analysis of glenohumeral and scapular kinematics. This will enable to investigators explore whether active arm elevation and the physiological motion pattern can be restored after, for example, reverse total shoulder arthroplasty despite a nonanatomic prosthesis configuration.
对于因肩袖关节病导致主动上肢抬高功能丧失的患者,采用非解剖型反式全肩关节置换术可成功恢复主动抬高功能。在这种情况下,肩部运动学主要关注盂肱关节的运动,而忽略了肩胛运动,尽管两者对整体肩部运动都有重要贡献。由于肩胛运动学在临床和实验室中都难以评估,因此人们对其了解并不充分,常简化为静态肩胛的盂肱关节模型。
问题/目的:(1)在上肢抬高过程中,肩肱节律(肩胛旋转/盂肱抬高比率)是否会发生变化?(2)在上肢抬高在临床上可见之前,是否存在肩胛运动?(3)有肩袖关节病的成年人与无肩袖关节病的成年人在肩部抬高过程中的肩胛胸壁运动学有何不同?
这是一项比较运动学研究,纳入了20名无肩袖损伤的年轻成年志愿者(参照组)(7名女性,13名男性;平均年龄:27±3.5岁)和20例(22个肩部)肩袖撕裂性关节病患者(10名女性,10名男性;平均年龄:74±6.2岁)。我们使用了Vicom公司的三维(3-D)运动分析系统,配备8台高速红外摄像机(帧率200Hz)和25个皮肤标记点。使用上肢运动分析评估(ULEMA)开源模型研究肩胛胸壁和盂肱关节的运动学。主要研究的运动是在肩胛平面内的主动上肢抬高。在进行数据清理、建模和归一化处理后,定性分析上肢抬高开始时肩肱节律和肩胛运动的变化,并应用统计参数映射来研究有肩袖关节病的成年人与无肩袖关节病的成年人在肩胛胸壁运动学上的差异。
在抬高过程中,肩胛节律持续变化。在无肩袖关节病的人群中,在85°至120°之间可观察到均匀的比例相对角贡献,而在肩袖关节病患者中,这种规律模式受到干扰。我们观察到在上肢抬高可见之前肩胛有内旋,随后在上肢抬高开始时肩胛出现低外侧甚至内侧旋转(约达25°)。肩袖关节病患者在抬高50°至93°之间的肩胛胸壁运动比参照组更多。
我们的研究引入了一种双重归一化数据分析方法,能够以非侵入性方式更详细地评估复杂的肩胛运动学。肩胛胸壁运动比之前报道的更为复杂,尤其是在肩袖关节病患者中。在整个上肢抬高过程中,肩肱节律动态变化。在临床上可见上肢抬高之前,由于肌肉参与,肩胛会出现反向旋转。与参照组均匀的肩部运动学相比,肩袖关节病患者表现出不同的模式,主要在上肢抬高50°至93°范围内出现肩胛运动。
本研究结果表明,肩袖关节病患者在上肢抬高过程中存在特定的肩胛运动模式。我们的研究引入了一种新的非侵入性方法,能够同时分析盂肱关节和肩胛运动学。这将使研究人员能够探讨例如在采用非解剖型假体配置的反式全肩关节置换术后,主动上肢抬高和生理运动模式是否能够恢复。