Thompson Alison L, Thorp Kelly R, Conley Matthew M, Roybal Michael, Moller David, Long Jacob C
USDA-ARS Arid Land Agricultural Research Center, Maricopa, AZ 85138 USA.
Plant Methods. 2020 Jul 16;16:97. doi: 10.1186/s13007-020-00639-9. eCollection 2020.
Field-based high-throughput plant phenotyping (FB-HTPP) has been a primary focus for crop improvement to meet the demands of a growing population in a changing environment. Over the years, breeders, geneticists, physiologists, and agronomists have been able to improve the understanding between complex dynamic traits and plant response to changing environmental conditions using FB-HTPP. However, the volume, velocity, and variety of data captured by FB-HTPP can be problematic, requiring large data stores, databases, and computationally intensive data processing pipelines. To be fully effective, FB-HTTP data workflows including applications for database implementation, data processing, and data interpretation must be developed and optimized. At the US Arid Land Agricultural Center in Maricopa Arizona, USA a data workflow was developed for a terrestrial FB-HTPP platform that utilized a custom Python application and a PostgreSQL database. The workflow developed for the HTPP platform enables users to capture and organize data and verify data quality before statistical analysis. The data from this platform and workflow were used to identify plant lodging and heat tolerance, enhancing genetic gain by improving selection accuracy in an upland cotton breeding program. An advantage of this platform and workflow was the increased amount of data collected throughout the season, while a main limitation was the start-up cost.
基于田间的高通量植物表型分析(FB-HTPP)一直是作物改良的主要重点,以满足不断变化的环境中不断增长的人口需求。多年来,育种家、遗传学家、生理学家和农艺学家利用FB-HTPP增进了对复杂动态性状与植物对不断变化的环境条件的反应之间的理解。然而,FB-HTPP捕获的数据的数量、速度和种类可能存在问题,需要大型数据存储、数据库和计算密集型数据处理管道。为了充分发挥效力,必须开发和优化包括数据库实施、数据处理和数据解释应用程序在内的FB-HTTP数据工作流程。在美国亚利桑那州马里科帕的美国旱地农业中心,为一个地面FB-HTPP平台开发了一种数据工作流程,该流程利用了一个定制的Python应用程序和一个PostgreSQL数据库。为HTPP平台开发的工作流程使用户能够在统计分析之前捕获和整理数据并验证数据质量。该平台和工作流程产生的数据被用于识别植物倒伏和耐热性,通过提高陆地棉育种计划中的选择准确性来提高遗传增益。该平台和工作流程的一个优点是整个季节收集的数据量增加了,而一个主要限制是启动成本。