Suppr超能文献

对具有重复单元中同时存在平面度和扭曲度的前体聚酰亚胺的碳分子筛膜性能的影响

Effects on Carbon Molecular Sieve Membrane Properties for a Precursor Polyimide with Simultaneous Flatness and Contortion in the Repeat Unit.

作者信息

Liang Jiachen, Wang Zhenggong, Huang Menghui, Wu Shanshan, Shi Yanshu, Zhang Yatao, Jin Jian

机构信息

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.

School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, 450001, P. R. China.

出版信息

ChemSusChem. 2020 Oct 21;13(20):5531-5538. doi: 10.1002/cssc.202001572. Epub 2020 Sep 1.

Abstract

Carbon molecular sieve (CMS)-based membrane separation is a promising solution for hydrogen separation due to its great advantages on perm-selectivity, thermal stability, and chemical stability. To prepare high-performance CMS membranes, the molecular structure of polymer precursors and their arrangements should be primarily considered. In this work, a benzimidazole-based 6FDA (2,2'-bis(3,4'-dicarboxyphenyl) hexafluoropropane dianhydride)-type polyimide (PABZ-6FDA-PI) is chosen as precursor to prepare the CMS membrane. Effects of chain flatness and contortion in the polyimide precursor on gas-separation performance of CMS membranes were studied in detail by gas adsorption and permeation experiment. The H permeability of CMS is up to 9500 Barrer and ideal selectivity of gas pairs of H /CH and H /CO is up to 3800 and 13, respectively. The comprehensive performance of hydrogen separation including H /CO , H /N , and H /CH gas pairs is located well above previously reported upper bounds for polymers.

摘要

基于碳分子筛(CMS)的膜分离因其在渗透选择性、热稳定性和化学稳定性方面的巨大优势,是一种很有前景的氢气分离解决方案。为了制备高性能的CMS膜,首先应考虑聚合物前驱体的分子结构及其排列方式。在这项工作中,选择了一种基于苯并咪唑的6FDA(2,2'-双(3,4'-二羧基苯基)六氟丙烷二酐)型聚酰亚胺(PABZ-6FDA-PI)作为前驱体来制备CMS膜。通过气体吸附和渗透实验,详细研究了聚酰亚胺前驱体中链的扁平度和扭曲度对CMS膜气体分离性能的影响。CMS的氢气渗透率高达9500巴列尔,氢气/甲烷和氢气/一氧化碳气体对的理想选择性分别高达3800和13。包括氢气/一氧化碳、氢气/氮气和氢气/甲烷气体对在内的氢气分离综合性能远高于此前报道的聚合物上限。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验