Chen Lei, Wu Lili, Wang Yue, Pan Yinping, Zhang Denghui, Zeng Junwen, Liu Xiaoyu, Ma Linxian, Peng Wei, Wang Yihua, Ren Jie, Wang Zhen
CAS Center for Excellence in Superconducting Electronics (CENSE), State Key Laboratory of Functional Material for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, China.
University of the Chinese Academy of Sciences, Beijing 100049, China.
ACS Nano. 2020 Sep 22;14(9):11002-11008. doi: 10.1021/acsnano.0c04405. Epub 2020 Jul 27.
Scalable memories that can match the speeds of superconducting logic circuits have long been desired to enable a superconducting computer. A superconducting loop that includes a Josephson junction can store a flux quantum state in picoseconds. However, the requirement for the loop inductance to create a bistate hysteresis sets a limit on the minimal area occupied by a single memory cell. Here, we present a miniaturized superconducting memory cell based on a three-dimensional (3D) Nb nano-superconducting quantum interference device (nano-SQUID). The major cell area here fits within an 8 × 9 μm rectangle with a cross-selected function for memory implementation. The cell shows periodic tunable hysteresis between two neighboring flux quantum states produced by bias current sweeping because of the large modulation depth of the 3D nano-SQUID (∼66%). Furthermore, the measured current-phase relations (CPRs) of nano-SQUIDs are shown to be skewed from a sine function, as predicted by theoretical modeling. The skewness and the critical current of 3D nano-SQUIDs are linearly correlated. It is also found that the hysteresis loop size is in a linear scaling relationship with the CPR skewness using the statistics from characterization of 26 devices. We show that the CPR skewness range of π/4-3π/4 is equivalent to a large loop inductance in creating a stable bistate hysteresis for memory implementation. Therefore, the skewed CPR of 3D nano-SQUID enables further superconducting memory cell miniaturization by overcoming the inductance limitation of the loop area.
长期以来,人们一直希望能有可扩展的存储器,其速度能与超导逻辑电路相匹配,以实现超导计算机。包含约瑟夫森结的超导回路能够在皮秒内存储磁通量子态。然而,为了产生双态磁滞而对回路电感的要求限制了单个存储单元所占据的最小面积。在此,我们展示了一种基于三维(3D)铌纳米超导量子干涉器件(纳米超导量子干涉仪)的小型化超导存储单元。这里主要的单元面积位于一个8×9μm的矩形内,具有用于实现存储的交叉选择功能。由于3D纳米超导量子干涉仪的调制深度较大(约66%),该单元在通过偏置电流扫描产生的两个相邻磁通量子态之间表现出周期性可调磁滞。此外,正如理论模型所预测的,纳米超导量子干涉仪的测量电流 - 相位关系(CPR)显示偏离正弦函数。3D纳米超导量子干涉仪的偏斜度与临界电流呈线性相关。通过对26个器件的表征统计还发现,磁滞回线大小与CPR偏斜度呈线性比例关系。我们表明,在为实现存储创建稳定双态磁滞方面,π/4 - 3π/4的CPR偏斜度范围等同于大的回路电感。因此,3D纳米超导量子干涉仪的偏斜CPR通过克服回路面积的电感限制,实现了超导存储单元的进一步小型化。