Niemelä Janne-Petteri, Rohbeck Nadia, Michler Johann, Utke Ivo
Laboratory for Mechanics of Materials and Nanostructures, Empa - Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, Thun CH-3602, Switzerland.
Dalton Trans. 2020 Aug 11;49(31):10832-10838. doi: 10.1039/d0dt02210a.
Molecular layer deposition (MLD) is a strongly emerging thin-film technique for deposition of ultra-thin inorganic-organic hybrid ("metalcone") coatings directly from the gas phase, even on complex three-dimensional surfaces. In particular alucones (Al-based hybrids) have been found interesting e.g. for Li-ion battery and gas-barrier applications owing to the promise for enhanced mechanical performance provided by the organic fragments in the materials' structure. However, the metalcones based on short/small organic fragments are relatively brittle from the mechanical perspective. Here, we demonstrate an efficient approach for tailoring mechanical properties of MLD-fabricated hybrid inorganic-organic thin films through control over the organic precursor chain length. The proof-of-concept data is presented for alucones prepared using trimethyl aluminum together with 1,6-hexanediol or 1,10-decanediol as the precursors. Tensile testing coupled with in situ optical microscopy reveals a gradual increase in stretchability with the increasing chain length, such that the crack onset strain value of 9.9 ± 0.2% is obtained for the 1,10-decanediol-based 100 nm-thick film. Through the demonstration of substantially suppressed crack propagation-as a sign of brittle-to-ductile transition-and the decrease in the elastic modulus value down to 4.6 ± 2.1 GPa, the mechanical performance of the alucone family is extended to the polymeric regime. The substantial increase in the mechanical performance within the metalcone material family makes the results particularly interesting for high-capacity high-volume-change battery electrodes requiring mechanically highly robust coatings.
分子层沉积(MLD)是一种迅速兴起的薄膜技术,用于直接从气相沉积超薄无机 - 有机杂化(“金属锥”)涂层,甚至可以沉积在复杂的三维表面上。特别是铝锥(基于铝的杂化物)已被发现具有吸引力,例如在锂离子电池和气阻隔应用中,因为材料结构中的有机片段有望提供增强的机械性能。然而,从机械角度来看,基于短/小有机片段的金属锥相对较脆。在这里,我们展示了一种通过控制有机前驱体链长来定制MLD制备的杂化无机 - 有机薄膜机械性能的有效方法。给出了使用三甲基铝与1,6 - 己二醇或1,10 - 癸二醇作为前驱体制备铝锥的概念验证数据。拉伸测试与原位光学显微镜相结合表明,随着链长的增加,拉伸性逐渐提高,以至于基于1,10 - 癸二醇的100纳米厚薄膜的裂纹起始应变值为9.9±0.2%。通过证明裂纹扩展得到显著抑制(作为从脆性到韧性转变的标志)以及弹性模量值降低至4.6±2.1 GPa,铝锥家族的机械性能扩展到了聚合物范围。金属锥材料家族中机械性能的大幅提高使得这些结果对于需要机械上高度坚固涂层的高容量、高体积变化的电池电极特别有意义。