Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France.
Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135, Avenue de Rangueil, F-31077 Toulouse Cedex 04, France.
J Org Chem. 2021 Feb 5;86(3):2058-2075. doi: 10.1021/acs.joc.0c00777.
Progress in glycoscience is strongly dependent on the availability of broadly diverse tailor-made, well-defined, and often complex oligosaccharides. Herein, going beyond natural resources and aiming to circumvent chemical boundaries in glycochemistry, we tackle the development of an chemoenzymatic strategy holding great potential to answer the need for molecular diversity characterizing microbial cell-surface carbohydrates. The concept is exemplified in the context of , a major cause of diarrhoeal disease. Aiming at a broad serotype coverage glycoconjugate vaccine, a non-natural lightly protected tetrasaccharide was designed for compatibility with (i) serotype-specific glucosylations and -acetylations defining O-antigens, (ii) recognition by suitable α-transglucosylases, and (iii) programmed oligomerization following enzymatic α-d-glucosylation. The tetrasaccharide core was chemically synthesized from two crystalline monosaccharide precursors. Six α-transglucosylases found in the glycoside hydrolase family 70 were shown to transfer glucosyl residues on the non-natural acceptor. The successful proof of concept is achieved for a pentasaccharide featuring the glucosylation pattern from the type IV O-antigen. It demonstrates the potential of appropriately planned chemoenzymatic pathways involving non-natural acceptors and low-cost donor/transglucosylase systems to achieve the demanding regioselective α-d-glucosylation of large substrates, paving the way to microbial oligosaccharides of vaccinal interest.
糖科学的进展强烈依赖于广泛多样的、定制的、定义良好的、且通常复杂的寡糖。在此,我们超越自然资源,并旨在规避糖化学中的化学界限,提出了一种具有巨大潜力的化学生物酶策略,以满足微生物细胞表面碳水化合物的分子多样性需求。该概念在志贺氏菌的背景下得到了例证,志贺氏菌是腹泻病的主要病因之一。为了实现广泛血清型覆盖的糖缀合物疫苗,我们设计了一种非天然的轻度保护的四糖,以与以下方面兼容:(i)定义 O-抗原的血清型特异性葡糖基化和乙酰化,(ii)适合的α-转葡糖基酶的识别,以及(iii)酶促α-葡萄糖基化后的程序化寡聚化。该四糖核心通过从两种结晶单糖前体化学合成。来自糖苷水解酶家族 70 的六种α-转葡糖基酶被证明可以在非天然受体上转移葡糖基残基。具有来自 IV 型 O-抗原的葡糖基化模式的五糖的成功概念验证,证明了涉及非天然受体和低成本供体/转葡糖基酶系统的适当规划的化学生物酶途径具有实现大底物的高区域选择性α-d-葡萄糖基化的潜力,为具有疫苗潜力的微生物寡糖铺平了道路。