Xiao Wei, Sun Qian, Liu Jian, Xiao Biwei, Li Xia, Glans Per-Anders, Li Jun, Li Ruying, Li Xifei, Guo Jinghua, Yang Wanli, Sham Tsun-Kong, Sun Xueliang
Department of Mechanical & Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada.
Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada.
ACS Appl Mater Interfaces. 2020 Aug 19;12(33):37116-37127. doi: 10.1021/acsami.0c08899. Epub 2020 Aug 6.
The pursuit of a high-capacity anode material has been urgently required for commercializing sodium-ion batteries with a high energy density and an improved working safety. In the absence of thermodynamically stable sodium intercalated compounds with graphite, constructing nanostructures with expanded interlayer distances is still the mainstream option for developing high-performance carbonaceous anodes. In this regard, a surface-functionalized and pore-forming strategy through a facile CO thermal etching route was rationally adopted to engineer negligible oxygenated functionalities on commercial carbon for boosting the sodium storage process. Benefitted from the abundant ionic/electronic pathways and more active reaction sites in the microporous structure with noticeable pseudocapacitive behaviors, the functionalized porous carbon could achieve a highly reversible capacity of 505 mA h g at 50 mA g, an excellent rate performance of 181 mA h g at 16,000 mA g, and an exceptional rate cycle stability of 176 mA h g at 3200 mA g over 1000 cycles. These outstanding electrochemical properties should be ascribed to a synergistic mechanism, fully utilizing the graphitic and amorphous structures for synchronous intercalations of sodium ions and solvated sodium ion compounds, respectively. Additionally, the controllable generation and evolution of a robust but thin solid electrolyte interphase film with the emergence of obvious capacitive reactions on the defective surface, favoring the rapid migration of sodium ions and solvated species, also contribute to a remarkable electrochemical performance of this porous carbon black.
为了使具有高能量密度和更高工作安全性的钠离子电池商业化,迫切需要开发高容量负极材料。由于不存在与石墨具有热力学稳定性的钠插层化合物,构建具有扩大层间距的纳米结构仍然是开发高性能碳质负极的主流选择。在这方面,通过简便的CO热蚀刻路线采用表面功能化和成孔策略,在商业碳上设计出可忽略不计的氧化官能团,以促进钠存储过程。得益于丰富的离子/电子传导路径以及具有明显赝电容行为的微孔结构中更多的活性反应位点,功能化多孔碳在50 mA g下可实现505 mA h g的高可逆容量,在16,000 mA g下具有181 mA h g的优异倍率性能,在3200 mA g下经过1000次循环具有176 mA h g的出色倍率循环稳定性。这些出色的电化学性能应归因于一种协同机制,即分别充分利用石墨和非晶结构来同步嵌入钠离子和溶剂化钠离子化合物。此外,在缺陷表面出现明显的电容反应时,可控生成并演化出坚固但薄的固体电解质界面膜,有利于钠离子和溶剂化物种的快速迁移,这也有助于这种多孔炭黑具有卓越的电化学性能。