Suppr超能文献

分层类人深度神经网络在摘要文本生成中的应用。

Hierarchical Human-Like Deep Neural Networks for Abstractive Text Summarization.

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 Jun;32(6):2744-2757. doi: 10.1109/TNNLS.2020.3008037. Epub 2021 Jun 2.

Abstract

Developing an abstractive text summarization (ATS) system that is capable of generating concise, appropriate, and plausible summaries for the source documents is a long-term goal of artificial intelligence (AI). Recent advances in ATS are overwhelmingly contributed by deep learning techniques, which have taken the state-of-the-art of ATS to a new level. Despite the significant success of previous methods, generating high-quality and human-like abstractive summaries remains a challenge in practice. The human reading cognition, which is essential for reading comprehension and logical thinking, is still relatively new territory and underexplored in deep neural networks. In this article, we propose a novel Hierarchical Human-like deep neural network for ATS (HH-ATS), inspired by the process of how humans comprehend an article and write the corresponding summary. Specifically, HH-ATS is composed of three primary components (i.e., a knowledge-aware hierarchical attention module, a multitask learning module, and a dual discriminator generative adversarial network), which mimic the three stages of human reading cognition (i.e., rough reading, active reading, and postediting). Experimental results on two benchmark data sets (CNN/Daily Mail and Gigaword) demonstrate that HH-ATS consistently and substantially outperforms the compared methods.

摘要

开发能够为源文档生成简洁、恰当、合理摘要的抽象文本摘要(ATS)系统是人工智能(AI)的长期目标。最近 ATS 的进展主要得益于深度学习技术,这些技术将 ATS 的最新水平提升到了一个新的高度。尽管以前的方法取得了重大成功,但生成高质量和类似人类的抽象摘要仍然是实践中的一个挑战。人类阅读认知对于阅读理解和逻辑思维至关重要,但在深度神经网络中仍然是一个相对较新的领域,尚未得到充分探索。在本文中,我们提出了一种新颖的分层类人深度神经网络用于 ATS(HH-ATS),该模型受到人类理解文章和撰写相应摘要的过程的启发。具体来说,HH-ATS 由三个主要组件组成(即知识感知分层注意力模块、多任务学习模块和双鉴别器生成对抗网络),这些组件模拟了人类阅读认知的三个阶段(即粗略阅读、主动阅读和后期编辑)。在两个基准数据集(CNN/Daily Mail 和 Gigaword)上的实验结果表明,HH-ATS 始终显著优于对比方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验