Suppr超能文献

受翻译字数限制,我仅能提供英文原文,如需翻译为中文或其他语言,请提供更多信息。

Design of Tunable Protein Interfaces Controlled by Post-Translational Modifications.

机构信息

School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.

Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, ACT 2601, Australia.

出版信息

ACS Synth Biol. 2020 Aug 21;9(8):2132-2143. doi: 10.1021/acssynbio.0c00208. Epub 2020 Aug 10.

Abstract

The design of protein interaction interfaces is a cornerstone of synthetic biology, where they can be used to promote the association of protein subunits into active molecular complexes or into protein nanostructures. In nature, protein interactions can be modulated by post-translational modifications (PTMs) that modify the protein interfaces with the addition and removal of various chemical groups. PTMs thus represent a means to gain control over protein interactions, yet they have seldom been considered in the design of synthetic proteins. Here, we explore the potential of a reversible PTM, serine phosphorylation, to modulate the interactions between peptides. We designed a series of interacting peptide pairs, including heterodimeric coiled coils, that contained one or more protein kinase A (PKA) recognition motifs. Our set of peptide pairs comprised interactions ranging from nanomolar to micromolar affinities. Mass spectrometry analyses showed that all peptides were excellent phosphorylation substrates of PKA, and subsequent phosphate removal could be catalyzed by lambda protein phosphatase. Binding kinetics measurements performed before and after treatment of the peptides with PKA revealed that phosphorylation of the target serines affected both the association and dissociation rates of the interacting peptides. We observed both the strengthening of interactions (up to an 11-fold decrease in ) and the weakening of interactions (up to a 180-fold increase in ). -designed PTM-modulated interfaces will be useful to control the association of proteins in biological systems using protein-modifying enzymes, expanding the paradigm of self-assembly to encompass controlled assembly of engineerable protein complexes.

摘要

蛋白质相互作用界面的设计是合成生物学的基石,在那里可以用来促进蛋白质亚基形成活性分子复合物或蛋白质纳米结构。在自然界中,蛋白质相互作用可以通过翻译后修饰(PTMs)来调节,这些修饰通过添加和去除各种化学基团来改变蛋白质界面。因此,PTMs 代表了一种控制蛋白质相互作用的手段,但在合成蛋白质的设计中很少被考虑。在这里,我们探索了可逆 PTM 丝氨酸磷酸化在调节肽相互作用中的潜力。我们设计了一系列相互作用的肽对,包括异源二聚体卷曲螺旋,其中包含一个或多个蛋白激酶 A(PKA)识别基序。我们的肽对集包括从纳摩尔到微摩尔亲和力的相互作用。质谱分析表明,所有肽都是 PKA 的极好磷酸化底物,随后的磷酸基团去除可以由 lambda 蛋白磷酸酶催化。在肽用 PKA 处理前后进行的结合动力学测量表明,靶丝氨酸的磷酸化影响相互作用肽的缔合和解离速率。我们观察到相互作用的增强(达到 11 倍的降低)和相互作用的减弱(达到 180 倍的增加)。设计的 PTM 调节界面将有助于使用蛋白质修饰酶控制生物系统中蛋白质的缔合,将自组装的范例扩展到包含可工程化蛋白质复合物的受控组装。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验