Suppr超能文献

酸性条件下滴流床空气生物滤池中氯仿的生物过滤

Biofiltration of Chloroform in a Trickle Bed Air Biofilter Under Acidic Conditions.

作者信息

Palanisamy Keerthisaranya, Mezgebe Bineyam, Sorial George A, Sahle-Demessie Endalkachew

机构信息

Department of Biomedical, Chemical and Environmental Engineering, Environmental Engineering Program, University of Cincinnati, Cincinnati, OH, USA.

Office of Research and Development, NRMRL, U.S. Environmental Protection Agency, Cincinnati, OH, USA.

出版信息

Water Air Soil Pollut. 2016 Nov 30;227(12). doi: 10.1007/s11270-016-3194-3.

Abstract

In this paper, the application of biofiltration is investigated for controlled removal of gas phase chloroform through cometabolic degradation with ethanol. A trickle bed air biofilter (TBAB) operated under acidic pH 4 is subjected to aerobic biodegradation of chloroform and ethanol. The TBAB is composed of pelleted diatomaceous earth filter media inoculated with filamentous fungi species, which served as the principle biodegrading microorganism. The removal efficiencies of 5 ppm of chloroform mixed with different ratios of ethanol as cometabolite (25, 50, 100, 150, and 200 ppm) ranged between 69.9 and 80.9%. The removal efficiency, reaction rate kinetics, and the elimination capacity increased proportionately with an increase in the cometabolite concentration. The carbon recovery from the TBAB amounted to 69.6% of the total carbon input. It is postulated that the remaining carbon contributed to excess biomass yield within the system. Biomass control strategies such as starvation and stagnation were employed at different phases of the experiment. The chloroform removal kinetics provided a maximum reaction rate constant of 0.0018 s. The highest ratio of chemical oxygen demand (COD)/nitrogen was observed at 14.5. This study provides significant evidence that the biodegradation of a highly chlorinated methane can be favored by cometabolism in a fungi-based TBAB.

摘要

本文研究了生物过滤在通过与乙醇共代谢降解来控制去除气相氯仿方面的应用。一个在酸性pH值4下运行的滴流床空气生物滤池(TBAB)用于氯仿和乙醇的好氧生物降解。TBAB由接种丝状真菌物种的硅藻土颗粒过滤介质组成,丝状真菌作为主要的生物降解微生物。5 ppm氯仿与不同比例的乙醇(作为共代谢物,分别为25、50、100、150和200 ppm)混合时的去除效率在69.9%至80.9%之间。去除效率、反应速率动力学和去除容量随着共代谢物浓度的增加而成比例增加。从TBAB中回收的碳量占总碳输入量的69.6%。据推测,剩余的碳导致了系统内过量的生物质产量。在实验的不同阶段采用了诸如饥饿和停滞等生物质控制策略。氯仿去除动力学提供的最大反应速率常数为0.0018 s。观察到化学需氧量(COD)/氮的最高比例为14.5。这项研究提供了重要证据,表明在基于真菌的TBAB中,共代谢可以促进高度氯化甲烷的生物降解。

相似文献

1
Biofiltration of Chloroform in a Trickle Bed Air Biofilter Under Acidic Conditions.
Water Air Soil Pollut. 2016 Nov 30;227(12). doi: 10.1007/s11270-016-3194-3.
2
Biological treatment of benzene in a controlled trickle bed air biofilter.
Chemosphere. 2009 Jun;75(10):1315-21. doi: 10.1016/j.chemosphere.2009.03.008. Epub 2009 Apr 3.
4
Kinetics of the removal of mono-chlorobenzene vapour from waste gases using a trickle bed air biofilter.
J Hazard Mater. 2006 Oct 11;137(3):1560-8. doi: 10.1016/j.jhazmat.2006.04.042. Epub 2006 Apr 29.
5
Removal of benzene under acidic conditions in a controlled Trickle Bed Air Biofilter.
J Hazard Mater. 2010 Dec 15;184(1-3):345-349. doi: 10.1016/j.jhazmat.2010.08.042.
6
Biofiltration of isopropyl alcohol by a trickle-bed air biofilter.
Biodegradation. 2003;14(1):9-18. doi: 10.1023/a:1023533303838.
7
Evaluation of trickle-bed air biofilter performance for MEK removal.
J Hazard Mater. 2004 Oct 18;114(1-3):153-8. doi: 10.1016/j.jhazmat.2004.08.012.
9
Biofiltration of 1,1,1-trichloroethane by a trickle-bed air biofilter.
Appl Biochem Biotechnol. 2003 Sep;110(3):125-36. doi: 10.1385/abab:110:3:125.
10
Effect of loading types on performance characteristics of a trickle-bed bioreactor and biofilter during styrene/acetone vapor biofiltration.
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2016 Jul 2;51(8):669-78. doi: 10.1080/10934529.2016.1159882. Epub 2016 Apr 18.

引用本文的文献

1
3
Combination of highly efficient microflora to degrade paint spray exhaust gas.
Sci Rep. 2020 Apr 7;10(1):6027. doi: 10.1038/s41598-020-62972-2.

本文引用的文献

1
Removal of the sesquiterpene β-caryophyllene from air via biofiltration: performance assessment and microbial community structure.
Biodegradation. 2013 Sep;24(5):685-98. doi: 10.1007/s10532-012-9616-z. Epub 2012 Dec 25.
2
Effect of methanol on the biofiltration of n-hexane.
J Hazard Mater. 2012 Jun 15;219-220:176-82. doi: 10.1016/j.jhazmat.2012.03.075. Epub 2012 Apr 4.
3
Henry's law constants of chlorinated solvents at elevated temperatures.
Chemosphere. 2012 Jan;86(2):156-65. doi: 10.1016/j.chemosphere.2011.10.004. Epub 2011 Nov 8.
4
Removal of benzene under acidic conditions in a controlled Trickle Bed Air Biofilter.
J Hazard Mater. 2010 Dec 15;184(1-3):345-349. doi: 10.1016/j.jhazmat.2010.08.042.
5
Biodegradation of chlorinated and non-chlorinated VOCs from pharmaceutical industries.
Appl Biochem Biotechnol. 2011 Feb;163(4):497-518. doi: 10.1007/s12010-010-9057-2. Epub 2010 Aug 27.
6
Biological treatment of benzene in a controlled trickle bed air biofilter.
Chemosphere. 2009 Jun;75(10):1315-21. doi: 10.1016/j.chemosphere.2009.03.008. Epub 2009 Apr 3.
7
Phenomenological model of fungal biofilters for the abatement of hydrophobic VOCs.
Biotechnol Bioeng. 2008 Dec 15;101(6):1182-92. doi: 10.1002/bit.21989.
8
Comparison of disinfection byproduct formation from chlorine and alternative disinfectants.
Water Res. 2007 Apr;41(8):1667-78. doi: 10.1016/j.watres.2007.01.032. Epub 2007 Mar 13.
9
Chloroform degradation by butane-grown cells of Rhodococcus aetherovorans BCP1.
Appl Microbiol Biotechnol. 2006 Nov;73(2):421-8. doi: 10.1007/s00253-006-0433-3. Epub 2006 Oct 13.
10
Cometabolism of trihalomethanes by mixed culture nitrifiers.
Water Res. 2006 Oct;40(18):3349-58. doi: 10.1016/j.watres.2006.07.033. Epub 2006 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验