State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Adv Mater. 2020 Sep;32(36):e2002246. doi: 10.1002/adma.202002246. Epub 2020 Jul 23.
The oxidation of intracellular biomolecules by reactive oxygen species (ROS) forms the basis for ROS-based tumor therapy. However, the current therapeutic modalities cannot catalyze H O and O concurrently for ROS generation, thereby leading to unsatisfactory therapeutic efficacy. Herein, it is reported a bioinspired hollow N-doped carbon sphere doped with a single-atom copper species (Cu-HNCS) that can directly catalyze the decomposition of both oxygen and hydrogen peroxide to ROS, namely superoxide ion (O • ) and the hydroxyl radical (•OH), respectively, in an acidic tumor microenvironment for the oxidation of intracellular biomolecules without external energy input, thus resulting in an enhanced tumor growth inhibitory effect. Notably, the Fenton reaction turnover frequency of Cu species in Cu-HNCS is ≈5000 times higher than that of Fe in commercial Fe O nanoparticles. Experimental results and density functional theory calculations reveal that the high catalytic activity of Cu-HNCS originates from the single-atom copper, and the calculation predicts a next-generation Fenton catalyst. This work provides an effective paradigm of tumor parallel catalytic therapy for considerably enhanced therapeutic efficacy.
活性氧(ROS)对细胞内生物分子的氧化作用是基于 ROS 的肿瘤治疗的基础。然而,目前的治疗方式不能同时催化 H2O 和 H2O2来产生 ROS,从而导致治疗效果不理想。在此,报道了一种仿生的空心 N 掺杂碳球掺杂单原子铜物种(Cu-HNCS),它可以在酸性肿瘤微环境中直接催化 H2O 和 H2O2的分解,分别产生超氧离子(O•)和羟基自由基(•OH),从而无需外部能量输入即可氧化细胞内生物分子,从而增强肿瘤生长抑制效果。值得注意的是,Cu-HNCS 中 Cu 物种的 Fenton 反应周转率约是商业 Fe2O3纳米颗粒中 Fe 的 5000 倍。实验结果和密度泛函理论计算表明,Cu-HNCS 的高催化活性源于单原子铜,并且计算预测了一种下一代 Fenton 催化剂。这项工作为显著提高治疗效果提供了一种有效的肿瘤平行催化治疗范例。