Suppr超能文献

高压单分子 FRET 研究赖氨酸核糖体开关:阳离子和渗透剂对压力诱导变性的影响。

High pressure single-molecule FRET studies of the lysine riboswitch: cationic and osmolytic effects on pressure induced denaturation.

机构信息

JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA.

出版信息

Phys Chem Chem Phys. 2020 Jul 22;22(28):15853-15866. doi: 10.1039/d0cp01921f.

Abstract

Deep sea biology is known to thrive at pressures up to ≈1 kbar, which motivates fundamental biophysical studies of biomolecules under such extreme environments. In this work, the conformational equilibrium of the lysine riboswitch has been systematically investigated by single molecule FRET (smFRET) microscopy at pressures up to 1500 bar. The lysine riboswitch preferentially unfolds with increasing pressure, which signals an increase in free volume (ΔV0 > 0) upon folding of the biopolymer. Indeed, the effective lysine binding constant increases quasi-exponentially with pressure rise, which implies a significant weakening of the riboswitch-ligand interaction in a high-pressure environment. The effects of monovalent/divalent cations and osmolytes on folding are also explored to acquire additional insights into cellular mechanisms for adapting to high pressures. For example, we find that although Mg2+ greatly stabilizes folding of the lysine riboswitch (ΔΔG0 < 0), there is negligible impact on changes in free volume (ΔΔV0 ≈ 0) and thus any pressure induced denaturation effects. Conversely, osmolytes (commonly at high concentrations in deep sea marine species) such as the trimethylamine N-oxide (TMAO) significantly reduce free volumes (ΔΔV0 < 0) and thereby diminish pressure-induced denaturation. We speculate that, besides stabilizing RNA structure, enhanced levels of TMAO in cells might increase the dynamic range for competent riboswitch folding by suppressing the pressure-induced denaturation response. This in turn could offer biological advantage for vertical migration of deep-sea species, with impacts on food searching in a resource limited environment.

摘要

深海生物学在高达约 1 kbar 的压力下得以生存,这激发了对极端环境下生物分子的基础生物物理研究。在这项工作中,通过单分子 FRET(smFRET)显微镜在高达 1500 巴的压力下系统地研究了赖氨酸核糖开关的构象平衡。赖氨酸核糖开关随着压力的增加而优先展开,这表明生物聚合物折叠时自由体积增加(ΔV0 > 0)。实际上,有效赖氨酸结合常数随着压力升高呈准指数增加,这意味着在高压环境中核糖开关-配体相互作用显著减弱。还探索了单价/二价阳离子和渗透剂对折叠的影响,以深入了解细胞适应高压的机制。例如,我们发现尽管 Mg2+ 极大地稳定了赖氨酸核糖开关的折叠(ΔΔG0 < 0),但对自由体积变化(ΔΔV0 ≈ 0)几乎没有影响,因此没有任何压力诱导的变性效应。相反,渗透剂(通常在深海海洋物种中浓度较高),如三甲胺 N-氧化物(TMAO),显著降低自由体积(ΔΔV0 < 0),从而减少压力诱导的变性。我们推测,除了稳定 RNA 结构外,细胞中 TMAO 水平的提高可能通过抑制压力诱导的变性反应,增加核糖开关折叠的动态范围,从而为深海物种的垂直迁移提供生物优势,对资源有限环境中的觅食产生影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验