Biofluid Simulation and Modeling, Universität Bayreuth, Bayreuth, Germany.
Department of Phyiscs, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
PLoS One. 2020 Jul 24;15(7):e0236371. doi: 10.1371/journal.pone.0236371. eCollection 2020.
We present a simple but accurate algorithm to calculate the flow and shear rate profile of shear thinning fluids, as typically used in biofabrication applications, with an arbitrary viscosity-shear rate relationship in a cylindrical nozzle. By interpolating the viscosity with a set of power-law functions, we obtain a mathematically exact piecewise solution to the incompressible Navier-Stokes equation. The algorithm is validated with known solutions for a simplified Carreau-Yasuda fluid, full numerical simulations for a realistic chitosan hydrogel as well as experimental velocity profiles of alginate and chitosan solutions in a microfluidic channel. We implement the algorithm in an easy-to-use Python tool, included as Supplementary Material, to calculate the velocity and shear rate profile during the printing process, depending on the shear thinning behavior of the bioink and printing parameters such as pressure and nozzle size. We confirm that the shear stress varies in an exactly linear fashion, starting from zero at the nozzle center to the maximum shear stress at the wall, independent of the shear thinning properties of the bioink. Finally, we demonstrate how our method can be inverted to obtain rheological bioink parameters in-situ directly before or even during printing from experimentally measured flow rate versus pressure data.
我们提出了一种简单但精确的算法,用于计算在圆柱形喷嘴中具有任意黏度-剪切速率关系的剪切稀化流体的流动和剪切速率分布,这些流体通常用于生物制造应用。通过用一组幂律函数对黏度进行插值,我们得到了不可压缩纳维-斯托克斯方程的数学精确分段解。该算法通过简化的 Carreau-Yasuda 流体的已知解、对真实壳聚糖水凝胶的全数值模拟以及微流道中藻酸盐和壳聚糖溶液的实验速度分布进行了验证。我们在一个易于使用的 Python 工具中实现了该算法,该工具包含在补充材料中,用于根据生物墨水的剪切稀化行为和打印参数(如压力和喷嘴尺寸)计算打印过程中的速度和剪切速率分布。我们证实,剪切应力从喷嘴中心的零开始以线性方式变化,直到壁面处的最大剪切应力,与生物墨水的剪切稀化特性无关。最后,我们展示了如何从实验测量的流速与压力数据中直接在打印之前甚至在打印过程中反演原位获得流变学生物墨水参数。