Suppr超能文献

可见光辐射下,在氧化石墨烯修饰的 Fe(III)/过一硫酸盐体系中加速 Fe(III)/Fe(II) 循环,增强双酚 A 的降解。

Enhancement of bisphenol A degradation by accelerating the Fe(III)/Fe(II) cycle in graphene oxide modified Fe(III)/peroxymonosulfate system under visible light irradiation.

机构信息

College of Architecture & Environment, Sichuan University, Chengdu 610065, China.

College of Architecture & Environment, Sichuan University, Chengdu 610065, China.

出版信息

J Colloid Interface Sci. 2020 Nov 15;580:540-549. doi: 10.1016/j.jcis.2020.07.029. Epub 2020 Jul 9.

Abstract

The photocatalytic behavior of the graphene oxide (GO) modified Fe(III)/peroxymonosulfate (Fe/PMS) system for bisphenol A (BPA) degradation was investigated. With the addition of GO, a dramatic enhancement of BPA degradation was obtained at pH 3.0 under visible light irradiation. According to ESR analysis and quenching tests, both SO and OH are responsible for BPA degradation. The characterization analysis demonstrates that Fe(III) can chelate with the oxygenic functional groups on the surface of GO forming a stable GO-Fe(III) complex. The detections of different kinds of Fe species reveal that Fe(III) can be reduced to Fe(II) by GO via intramolecular electron transfer in the GO-Fe(III) complex, and visible light could enhance this process. The Fe(III)/Fe(II) cycle not only occurs on the surface of GO, but also in aqueous solution via homogeneous reactions. In addition, the degradation pathway of BPA was proposed based on the identification of the intermediates using GC-MS and LC-MS techniques.

摘要

研究了氧化石墨烯(GO)修饰的铁(III)/过一硫酸盐(Fe/PMS)体系在可见光照射下光催化降解双酚 A(BPA)的性能。在 pH 值为 3.0 时,添加 GO 后,BPA 的降解得到了显著提高。根据 ESR 分析和猝灭实验,SO 和 OH 都对 BPA 的降解起作用。表征分析表明,Fe(III)可以与 GO 表面的含氧官能团螯合形成稳定的 GO-Fe(III)配合物。不同种类的 Fe 物种的检测表明,GO 可以通过 GO-Fe(III)配合物中的分子内电子转移将 Fe(III)还原为 Fe(II),可见光可以增强这一过程。Fe(III)/Fe(II)循环不仅发生在 GO 的表面,也通过均相反应发生在水溶液中。此外,还通过 GC-MS 和 LC-MS 技术鉴定中间产物,提出了 BPA 的降解途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验