Suppr超能文献

微流控技术制备的半透囊泡来调节包封大分子的相行为。

Semi-permeable vesicles produced by microfluidics to tune the phase behaviour of encapsulated macromolecules.

机构信息

INRAE, UR BIA, F-44316 Nantes, France.

Cogitamus Laboratory, France.

出版信息

J Colloid Interface Sci. 2020 Nov 15;580:709-719. doi: 10.1016/j.jcis.2020.07.022. Epub 2020 Jul 15.

Abstract

Understanding the dynamics of macromolecular assemblies in solution, such as Liquid-Liquid Phase Separation (LLPS), represents technologic and fundamental challenges in many fields. In cell biology, such dynamics are of great interest, because of their involvement in subcellular processes. In our study, we aimed to control the assembly of macromolecules in aqueous semi-permeable vesicles, that we named osmosomes, using microfluidics. We developed a microfluidic chip that allows for producting and trapping Giant Unilamellar Vesicles (GUVs) encapsulating macromolecules. This device also allows for modification of the composition of the inner phase and of the membranes of the trapped GUVs. The vesicles are produced from water-in-oil-in-water (w/o/w) double emulsions in less than 20 min after discarding the oil phase. They are highly monodisperse and their diameter can be modulated between 20 and 110 µm by tuning the flow rates of fluid phases. Their unilamellarity is proofed by two techniques: (1) fluorescence quenching experiments and (2) the insertion of the α-hemolysin membrane protein pore. We demonstrate that the internal pH of osmosomes can be tuned in less than 1 min by controlling solvent exchanges through the α-hemolysin pores. The detailed analysis of the exchange kinetics suggests that the microfluidic chip provides an efficient pore formation due to the physical trapping of vesicles and the constant flow rate. Finally, we show a proof of concept for macromolecular assembly within osmosomes by pH-triggered LLPS of wheat proteins within a few minutes.

摘要

了解溶液中大分子组装的动力学,如液-液相分离(LLPS),在许多领域都代表着技术和基础的挑战。在细胞生物学中,由于其参与了亚细胞过程,这种动力学非常有趣。在我们的研究中,我们旨在使用微流控技术控制在我们称之为渗透体的水溶半透性囊泡中大分子的组装。我们开发了一种微流控芯片,允许在封装大分子的巨单室囊泡(GUVs)中进行产品生产和捕获。该设备还允许对内部相的组成和捕获的 GUV 膜进行修饰。这些囊泡是由油包水包油(w/o/w)双乳液在不到 20 分钟内产生的,去除油相后。它们具有高度的单分散性,其直径可以通过调节流体相的流速在 20 到 110µm 之间进行调节。通过两种技术证明了它们的单分子层结构:(1)荧光猝灭实验和(2)α-溶血素膜蛋白孔的插入。我们证明通过控制通过α-溶血素孔的溶剂交换,可以在不到 1 分钟内调节渗透体的内部 pH。对交换动力学的详细分析表明,由于囊泡的物理捕获和恒定的流速,微流控芯片提供了有效的孔形成。最后,我们通过几分钟内小麦蛋白在 pH 触发的渗透体中发生液-液相分离证明了在渗透体中进行大分子组装的概念验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验