Coddington O M, Vukicevic T, Schmidt K S, Platnick S
Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado, USA.
ISED Office of Water Prediction NWS/NOAA, Tuscaloosa, Alabama, USA.
J Geophys Res Atmos. 2017 Aug 16;122(15):8079-8100. doi: 10.1002/2017jd026493. Epub 2017 Jul 21.
We rigorously quantify the probability of liquid or ice thermodynamic phase using only shortwave spectral channels specific to the National Aeronautics and Space Administration's Moderate Resolution Imaging Spectroradiometer, Visible Infrared Imaging Radiometer Suite, and the notional future Plankton, Aerosol, Cloud, ocean Ecosystem imager. The results show that two shortwave-infrared channels (2135 and 2250 nm) provide more information on cloud thermodynamic phase than either channel alone; in one case, the probability of ice phase retrieval increases from 65 to 82% by combining 2135 and 2250 nm channels. The analysis is performed with a nonlinear statistical estimation approach, the GEneralized Nonlinear Retrieval Analysis (GENRA). The GENRA technique has previously been used to quantify the retrieval of cloud optical properties from passive shortwave observations, for an assumed thermodynamic phase. Here we present the methodology needed to extend the utility of GENRA to a binary thermodynamic phase space (i.e., liquid or ice). We apply formal information content metrics to quantify our results; two of these (mutual and conditional information) have not previously been used in the field of cloud studies.
我们仅使用美国国家航空航天局的中分辨率成像光谱仪、可见红外成像辐射仪套件以及设想中的未来浮游生物、气溶胶、云、海洋生态系统成像仪所特有的短波光谱通道,严格量化液体或冰热力学相的概率。结果表明,两个短波红外通道(2135和2250纳米)比单独任何一个通道提供了更多关于云热力学相的信息;在一种情况下,通过组合2135和2250纳米通道,冰相反演的概率从65%增加到了82%。分析采用非线性统计估计方法——广义非线性反演分析(GENRA)进行。GENRA技术此前已用于根据假定的热力学相,量化从被动短波观测中反演云光学特性。在此,我们介绍将GENRA的效用扩展到二元热力学相空间(即液体或冰)所需的方法。我们应用形式信息内容度量来量化我们的结果;其中两个(互信息和条件信息)此前尚未在云研究领域中使用过。