Chou W Y, Marky L A, Zaunczkowski D, Breslauer K J
Department of Chemistry, Rutgers, State University of New Jersey, New Brunswick 08903.
J Biomol Struct Dyn. 1987 Oct;5(2):345-59. doi: 10.1080/07391102.1987.10506399.
We report the first calorimetrically-derived characterization of the thermodynamics of ethidium bromide (EB) and propidium iodide (PI) binding to a series of nucleic acid host duplexes. Our spectroscopic and calorimetric measurements yield the following results: 1) At low salt (16mM Na+) and 25 degrees C. PI binds more strongly than EB to a given host duplex. The magnitude of this PI preference depends only marginally on base sequence, with AT base pairs showing a greater PI preference than GC base pairs. 2) The enhanced binding of PI relative to EB at low salt and 25 degrees C reflects a more favorable entropic driving force for PI binding. 3) The PI binding preference diminishes at higher salt concentrations (216mM). In other words, the binding preference is electrostatic in origin. 4) The salt dependence of the binding constants (delta lnKb/delta ln[Na+]) reveal that PI binds as a dication while EB binds as a monocation. 5) PI and EB both exhibit impressive enthalpy-entropy compensations when they bind to the deoxy homopolymers poly dA.poly dT and poly dA.poly dU. We have observed a similar enthalpy-entropy compensation for netropsin binding to the poly dA.poly dT homopolymer duplex. We therefore conclude that the compensation phenomenon is an intrinsic property of the host duplex rather than reflecting a property of the binding ligand. 6) When either PI or EB bind to the corresponding ribo homopolymer (poly rA.poy rU) we do not observe the enthalpy-entropy compensation that characterizes the binding to the deoxy homopolymer. 7) EB and PI both bind more strongly to poly d(AT).poly d(AT) than to poly d(AU).poly d(AU). Specifically, the absence of the thymine methyl group in poly d(AU).poly d(AU) reduces the binding constant of both drugs by a factor of four. This reduction in binding is due to a less favorable entropy change. In this paper we present and discuss possible molecular origins for our observed thermodynamic and extra-thermodynamic data. In particular, we evoke solvent effects involving both the drugs and the host duplexes when we propose molecular interpretations which are consistent with our thermodynamic data.
我们报告了首个通过量热法得出的溴化乙锭(EB)和碘化丙啶(PI)与一系列核酸宿主双链体结合的热力学特征。我们的光谱和量热测量得出以下结果:1)在低盐(16mM Na +)和25摄氏度条件下,PI与给定宿主双链体的结合比EB更强。这种PI偏好的程度仅略微取决于碱基序列,AT碱基对比GC碱基对表现出更大的PI偏好。2)在低盐和25摄氏度下,PI相对于EB的结合增强反映了PI结合更有利的熵驱动力。3)在较高盐浓度(216mM)下,PI的结合偏好减弱。换句话说,结合偏好源于静电作用。4)结合常数的盐依赖性(δlnKb /δln[Na +])表明,PI以二价阳离子形式结合,而EB以单价阳离子形式结合。5)当PI和EB与脱氧同聚物聚dA·聚dT和聚dA·聚dU结合时,它们都表现出显著的焓 - 熵补偿。我们观察到净曲霉素与聚dA·聚dT同聚物双链体结合时也有类似的焓 - 熵补偿。因此,我们得出结论,补偿现象是宿主双链体的固有特性而非反映结合配体的特性。6)当PI或EB与相应的核糖同聚物(聚rA·聚rU)结合时,我们未观察到与脱氧同聚物结合所特有的焓 - 熵补偿。7)EB和PI与聚d(AT)·聚d(AT)的结合都比与聚d(AU)·聚d(AU)更强。具体而言,聚d(AU)·聚d(AU)中胸腺嘧啶甲基的缺失使两种药物的结合常数降低了四倍。这种结合的降低是由于熵变不太有利。在本文中,我们展示并讨论了我们观察到的热力学和非热力学数据可能的分子起源。特别是,当我们提出与热力学数据一致的分子解释时,我们考虑了涉及药物和宿主双链体的溶剂效应。