Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
J Chem Phys. 2020 Jul 21;153(3):034301. doi: 10.1063/5.0013468.
Photochromic molecular structures constitute a unique platform for constructing molecular switches, sensors, and memory devices. One of their most promising applications is as light-switchable electron acceptor or donor units. Here, we investigate a previously unexplored process that we postulate may occur in such systems: an ultrafast electron transfer triggered by a simultaneous photoisomerization of the donor or the acceptor moiety. We propose a theoretical model for this phenomenon and, with the aid of density functional theory calculations, apply it to the case of a dihydropyrene-type photochromic molecular donor. By considering the wavepacket dynamics and the photoisomerization yield, we show that the two processes involved, electron transfer and photoisomerization, are in general inseparable and need to be treated in a unified manner. We finish by discussing how the efficiency of photoisomerization-coupled electron transfer can be controlled experimentally.
光致变色分子结构构成了构建分子开关、传感器和记忆设备的独特平台。它们最有前途的应用之一是作为光控电子给体或受体单元。在这里,我们研究了一个以前未被探索的过程,我们假设可能会在这样的系统中发生:通过供体或受体部分的同时光异构化触发超快电子转移。我们为此现象提出了一个理论模型,并借助密度泛函理论计算,将其应用于二氢苉型光致变色分子给体的情况。通过考虑波包动力学和光致异构化产率,我们表明涉及的两个过程,电子转移和光致异构化,通常是不可分割的,需要以统一的方式处理。最后,我们讨论了如何通过实验控制光致异构化耦合电子转移的效率。