Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, 96822, USA.
Sci Rep. 2020 Jul 27;10(1):12483. doi: 10.1038/s41598-020-69357-5.
Although high affinity binding between streptavidin and biotin is widely exploited, the accompanying low rate of dissociation prevents its use in many applications where rapid ligand release is also required. To combine extremely tight and reversible binding, we have introduced disulfide bonds into opposite sides of a flexible loop critical for biotin binding, creating streptavidin muteins (M88 and M112) with novel disulfide-switchable binding properties. Crystal structures reveal how each disulfide exerts opposing effects on structure and function. Whereas the disulfide in M112 disrupts the closed conformation to increase k, the disulfide in M88 stabilizes the closed conformation, decreasing k 260-fold relative to streptavidin. The simple and efficient reduction of this disulfide increases k 19,000-fold, thus creating a reversible redox-dependent switch with 70-fold faster dissociation kinetics than streptavidin. The facile control of disulfide formation in M88 will enable the development of many new applications requiring high affinity and reversible binding.
尽管链霉亲和素与生物素之间具有高亲和力结合,但伴随而来的低解离率使其无法应用于许多也需要快速配体释放的应用中。为了结合极其紧密和可逆的结合,我们在生物素结合关键的柔性环的相对侧引入了二硫键,从而创造了具有新型二硫键可切换结合特性的链霉亲和素突变体(M88 和 M112)。晶体结构揭示了每个二硫键如何对结构和功能产生相反的影响。M112 中的二硫键破坏了封闭构象以增加 k,而 M88 中的二硫键稳定了封闭构象,使 k 相对于链霉亲和素降低 260 倍。该二硫键的简单高效还原使 k 增加了 19,000 倍,从而创建了一个具有比链霉亲和素快 70 倍的解离动力学的可逆氧化还原依赖性开关。M88 中二硫键形成的简便控制将能够开发许多需要高亲和力和可逆结合的新应用。