Isiksacan Ziya, Serhatlioglu Murat, Elbuken Caglar
UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey.
Analyst. 2020 Sep 14;145(18):5996-6005. doi: 10.1039/d0an00604a.
The flow behavior of blood is determined mainly by red blood cell (RBC) deformation and aggregation as well as blood viscoelasticity. These intricately interdependent parameters should be monitored by healthcare providers to understand all aspects of circulatory flow dynamics under numerous cases including cardiovascular and infectious diseases. Current medical instruments and microfluidic systems lack the ability to quantify these parameters all at once and in physiologically relevant flow conditions. This work presents a handheld platform and a measurement method for quantitative analysis of multiple of these parameters from 50 μl undiluted blood inside a miniaturized channel. The assay is based on an optical transmission analysis of collective RBC deformation and aggregation under near-infrared illumination during a 1 s damped oscillatory flow and at stasis, respectively. Measurements with blood of different hemo-rheological properties demonstrate that the presented approach holds a potential for initiating simultaneous and routine on-chip blood flow analysis even in resource-poor settings.
血液的流动行为主要由红细胞(RBC)的变形和聚集以及血液的粘弹性决定。医疗保健人员应监测这些错综复杂、相互依存的参数,以便了解包括心血管疾病和传染病在内的众多病例下循环流动动力学的各个方面。当前的医疗仪器和微流控系统缺乏在生理相关流动条件下一次性量化这些参数的能力。这项工作提出了一种手持平台和一种测量方法,用于对微型通道内50微升未稀释血液中的多个这些参数进行定量分析。该检测基于在1秒阻尼振荡流和静态期间近红外照明下对红细胞集体变形和聚集的光透射分析。对具有不同血液流变学特性的血液进行的测量表明,即使在资源匮乏的环境中,所提出的方法也具有启动同步和常规片上血流分析的潜力。