Tesche Christian, Bauer Maximilian J, Baquet Moritz, Hedels Benedikt, Straube Florian, Hartl Stefan, Gray Hunter N, Jochheim David, Aschauer Theresia, Rogowski Sebastian, Schoepf U Joseph, Massberg Steffen, Hoffmann Ellen, Ebersberger Ullrich
Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich, Germany.
Department of Cardiology, Munich University Clinic, Ludwig-Maximilians University, Munich, Germany.
Eur Radiol. 2021 Jan;31(1):486-493. doi: 10.1007/s00330-020-07083-2. Epub 2020 Jul 28.
To evaluate the long-term prognostic value of coronary CT angiography (cCTA)-derived plaque measures and clinical parameters on major adverse cardiac events (MACE) using machine learning (ML).
Datasets of 361 patients (61.9 ± 10.3 years, 65% male) with suspected coronary artery disease (CAD) who underwent cCTA were retrospectively analyzed. MACE was recorded. cCTA-derived adverse plaque features and conventional CT risk scores together with cardiovascular risk factors were provided to a ML model to predict MACE. A boosted ensemble algorithm (RUSBoost) utilizing decision trees as weak learners with repeated nested cross-validation to train and validate the model was used. Performance of the ML model was calculated using the area under the curve (AUC).
MACE was observed in 31 patients (8.6%) after a median follow-up of 5.4 years. Discriminatory power was significantly higher for the ML model (AUC 0.96 [95%CI 0.93-0.98]) compared with conventional CT risk scores including Agatston calcium score (AUC 0.84 [95%CI 0.80-0.87]), segment involvement score (AUC 0.88 [95%CI 0.84-0.91]), and segment stenosis score (AUC 0.89 [95%CI 0.86-0.92], all p < 0.05). Similar results were shown for adverse plaque measures (AUCs 0.72-0.82, all p < 0.05) and clinical parameters including the Framingham risk score (AUCs 0.71-0.76, all p < 0.05). The ML model yielded significantly higher diagnostic performance compared with logistic regression analysis (AUC 0.96 vs. 0.92, p = 0.024).
Integration of a ML model improves the long-term prediction of MACE when compared with conventional CT risk scores, adverse plaque measures, and clinical information. ML algorithms may improve the integration of patient's information to enhance risk stratification.
• A machine learning (ML) model portends high discriminatory power to predict major adverse cardiac events (MACE). • ML-based risk stratification shows superior diagnostic performance for MACE prediction over coronary CT angiography (cCTA)-derived risk scores or clinical parameters alone. • A ML model outperforms conventional logistic regression analysis for the prediction of MACE.
使用机器学习(ML)评估冠状动脉CT血管造影(cCTA)得出的斑块测量值和临床参数对主要不良心脏事件(MACE)的长期预后价值。
回顾性分析361例接受cCTA检查的疑似冠状动脉疾病(CAD)患者(61.9±10.3岁,65%为男性)的数据集。记录MACE情况。将cCTA得出的不良斑块特征、传统CT风险评分以及心血管危险因素提供给一个ML模型以预测MACE。使用一种以决策树作为弱学习器并采用重复嵌套交叉验证来训练和验证模型的增强集成算法(RUSBoost)。使用曲线下面积(AUC)计算ML模型的性能。
在中位随访5.4年后,31例患者(8.6%)发生了MACE。与传统CT风险评分相比,ML模型的鉴别能力显著更高(AUC 0.96 [95%CI 0.93 - 0.98]),传统CT风险评分包括阿加斯顿钙评分(AUC 0.84 [95%CI 0.80 - 0.87])、节段累及评分(AUC 0.88 [95%CI 0.84 - 0.91])和节段狭窄评分(AUC 0.89 [95%CI 0.86 - 0.92],所有p < 0.05)。不良斑块测量值(AUCs 0.72 - 0.82,所有p < 0.05)和包括弗雷明汉风险评分在内的临床参数(AUCs 0.71 - 0.76,所有p < 0.05)也显示出类似结果。与逻辑回归分析相比,ML模型的诊断性能显著更高(AUC 0.96对0.92,p = 0.024)。
与传统CT风险评分、不良斑块测量值和临床信息相比,ML模型的整合提高了MACE的长期预测能力。ML算法可能改善患者信息的整合以加强风险分层。
• 机器学习(ML)模型在预测主要不良心脏事件(MACE)方面具有很高的鉴别能力。• 基于ML的风险分层在MACE预测方面显示出优于冠状动脉CT血管造影(cCTA)得出的风险评分或单独的临床参数的诊断性能。• 在MACE预测方面,ML模型优于传统逻辑回归分析。