Suppr超能文献

蛋白质结构比对的基准测试方法

Benchmarking Methods of Protein Structure Alignment.

作者信息

Sykes Janan, Holland Barbara R, Charleston Michael A

机构信息

School of Natural Sciences, University of Tasmania, Hobart, Australia.

出版信息

J Mol Evol. 2020 Sep;88(7):575-597. doi: 10.1007/s00239-020-09960-2. Epub 2020 Jul 28.

Abstract

The function of a protein is primarily determined by its structure and amino acid sequence. Many biological questions of interest rely on being able to accurately determine the group of structures to which domains of a protein belong; this can be done through alignment and comparison of protein structures. Dozens of different methods for Protein Structure Alignment (PSA) have been proposed that use a wide range of techniques. The aim of this study is to determine the ability of PSA methods to identify pairs of protein domains known to share differing levels of structural similarity, and to assess their utility for clustering domains from several different folds into known groups. We present the results of a comprehensive investigation into eighteen PSA methods, to our knowledge the largest piece of independent research on this topic. Overall, SP-AlignNS (non-sequential) was found to be the best method for classification, and among the best performing methods for clustering. Methods (where possible) were split into the algorithm used to find the optimal alignment and the score used to assess similarity. This allowed us to largely separate the algorithm from the score it maximizes and thus, to assess their effectiveness independently of each other. Surprisingly, we found that some hybrids of mismatched scores and algorithms performed better than either of the native methods at classification and, in some cases, clustering as well. It is hoped that this investigation and the accompanying discussion will be useful for researchers selecting or designing methods to align protein structures.

摘要

蛋白质的功能主要由其结构和氨基酸序列决定。许多令人感兴趣的生物学问题都依赖于能够准确确定蛋白质结构域所属的结构组;这可以通过蛋白质结构的比对和比较来实现。已经提出了几十种不同的蛋白质结构比对(PSA)方法,这些方法使用了广泛的技术。本研究的目的是确定PSA方法识别已知具有不同结构相似性水平的蛋白质结构域对的能力,并评估它们将来自几种不同折叠的结构域聚类到已知组中的效用。我们展示了对18种PSA方法进行全面研究的结果,据我们所知,这是关于该主题最大规模的独立研究。总体而言,发现SP - AlignNS(非顺序)是分类的最佳方法,也是聚类性能最佳的方法之一。(在可能的情况下)方法被分为用于找到最优比对的算法和用于评估相似性的分数。这使我们能够在很大程度上将算法与其最大化的分数分开,从而相互独立地评估它们的有效性。令人惊讶的是,我们发现一些不匹配分数和算法的混合方法在分类以及某些情况下的聚类方面比任何一种原生方法都表现得更好。希望这项研究及相关讨论对选择或设计蛋白质结构比对方法的研究人员有所帮助。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验